Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng
![]() | $5$ |
![]() | $-2$ |
![]() | $-5$ |
![]() | $0$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
![]() | $(0;3;-2)$ |
![]() | $(6;-7;0)$ |
![]() | $(3;-2;-1)$ |
![]() | $(-3;8;-3)$ |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y-3}{-1}=\dfrac{z-1}{1}\) cắt mặt phẳng \((P)\colon2x-3y+z-2=0\) tại điểm \(I(a;b;c)\). Khi đó \(a+b+c\) bằng
![]() | \(7\) |
![]() | \(3\) |
![]() | \(9\) |
![]() | \(5\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta\colon\dfrac{x+4}{2}=\dfrac{y+2}{1}=\dfrac{z-3}{3}\) và mặt phẳng \((P)\colon4x+2y+(m-1)z+13=0\). Tìm giá trị của \(m\) để \((P)\) vuông góc với \(\Delta\).
![]() | \(m=-7\) |
![]() | \(m=7\) |
![]() | \(m=-\dfrac{7}{3}\) |
![]() | \(m=\dfrac{7}{3}\) |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
![]() | $\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ |
![]() | $\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
![]() | $\overrightarrow{u_2}=(5;-4;-3)$ |
![]() | $\overrightarrow{u_1}=(5;16;-13)$ |
![]() | $\overrightarrow{u_3}=(5;-16;-13)$ |
![]() | $\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
![]() | $\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
![]() | $\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ |
![]() | $\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ |
![]() | $\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ |
![]() | $\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |
Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
![]() | $\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$ |
![]() | $\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$ |
Trong không gian $Oxyz$, cho điểm $A(-4;-3;3)$ và mặt phẳng $(P)\colon x+y+z=0$. Đường thẳng đi qua $A$, cắt trục $Oz$ và song song với $(P)$ có phương trình là
![]() | $\dfrac{x-4}{4}=\dfrac{y-3}{3}=\dfrac{z-3}{-7}$ |
![]() | $\dfrac{x+4}{4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x+4}{-4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x+8}{4}=\dfrac{y+6}{3}=\dfrac{z-10}{-7}$ |
Trong không gian $Oxyz$, cho điểm $M(2;-5;3)$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Mặt phẳng đi qua $M$ và vuông góc với $d$ có phương trình là
![]() | $2x-5y+3z-38=0$ |
![]() | $2x+4y-z+19=0$ |
![]() | $2x+4y-z-19=0$ |
![]() | $2x+4y-z+11=0$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là
![]() | $-3$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $0$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là
![]() | $\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$ |
![]() | $\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ |
![]() | $\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$ |
![]() | $\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$ |
Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?
![]() | $\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$ |
![]() | $\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$ |
![]() | $\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$ |
![]() | $\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$ |
Trong không gian $Oxyz$, cho điểm $P(3;1;3)$ và đường thẳng $d\colon\dfrac{x-3}{1}=\dfrac{y+4}{3}=\dfrac{z-2}{3}$. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm $P$ và vuông góc với đường thẳng $d$?
![]() | $x-4y+3z+3=0$ |
![]() | $x+3y+3z-3=0$ |
![]() | $3x+y+3z-15=0$ |
![]() | $x+3y+3z-15=0$ |
Trong không gian $Oxyz$, cho hai đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y}{1}=\dfrac{z}{-2}$, $d'\colon\begin{cases} x=-1-2t\\ y=t\\ z=-1-t \end{cases}$ và mặt phẳng $(P)\colon x-y-z=0$. Biết rằng đường thẳng $\Delta$ song song với mặt phẳng $(P)$, cắt các đường thẳng $d,\,d'$ lần lượt tại $M$ và $N$ sao cho $MN=\sqrt{2}$ (điểm $M$ không trùng với gốc tọa độ $O$). Phương trình của đường thẳng $\Delta$ là
![]() | $\begin{cases}x=\dfrac{4}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
![]() | $\begin{cases}x=-\dfrac{4}{7}+3t\\ y=\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
![]() | $\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{3}{7}-5t\end{cases}$ |
![]() | $\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $M(1;1;-2)$ và vuông góc với mặt phẳng $(P)\colon x-y-z-1=0$ là
![]() | $\dfrac{x+1}{1}=\dfrac{y+1}{-1}=\dfrac{z-2}{-1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{-2}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-1}{-1}=\dfrac{z+2}{-1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z+1}{-2}$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
![]() | $(4;-1;6)$ |
![]() | $(4;6;1)$ |
![]() | $(-4;6;-1)$ |
![]() | $(4;1;6)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y-2z+1=0$ và hai điểm $A(1;-1;4)$, $B(3;-3;2)$. Gọi $K$ là giao điểm của đường thẳng $AB$ với mặt phẳng $(P)$. Tính tỉ số $t=\dfrac{KA}{KB}$.
![]() | $t=1$ |
![]() | $t=2$ |
![]() | $t=\dfrac{3}{2}$ |
![]() | $t=\dfrac{2}{3}$ |
Trong không gian \(Oxyz\), cho điểm \(M\left(2;-2;3\right)\) và đường thẳng \(d\colon\dfrac{x-1}{3}=\dfrac{y+2}{2}=\dfrac{z-3}{-1}\). Mặt phẳng đi qua \(M\) và vuông góc với \(d\) có phương trình là
![]() | \(3x+2y-z+1=0\) |
![]() | \(2x-2y+3z-17=0\) |
![]() | \(3x+2y-z-1=0\) |
![]() | \(2x-2y+3z+17=0\) |