Cho hàm số \(f(x)\) thỏa mãn đồng thời các điều kiện \(f'(x)=x+\sin x\) và \(f(0)=1\). Tìm \(f(x)\).
\(f(x)=\dfrac{x^2}{2}-\cos x+2\) | |
\(f(x)=\dfrac{x^2}{2}-\cos x-2\) | |
\(f(x)=\dfrac{x^2}{2}+\cos x\) | |
\(f(x)=\dfrac{x^2}{2}+\cos x+\dfrac{1}{2}\) |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?
$F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$ | |
$F(x)=\cos(1-2x)$ | |
$F(x)=\cos(1-2x)+1$ | |
$F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=0$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Tìm hàm số \(F(x)\) biết \(F'(x)=\sin2x\) và \(F\left(\dfrac{\pi}{2}\right)=1\).
\(F(x)=\dfrac{1}{2}\cos2x+\dfrac{3}{2}\) | |
\(F(x)=2x-\pi+1\) | |
\(F(x)=-\dfrac{1}{2}\cos2x+\dfrac{1}{2}\) | |
\(F(x)=-\cos2x\) |
Họ nguyên hàm của hàm số \(f(x)=x+\sin x\) là
\(1+\cos x+C\) | |
\(\dfrac{x^2}{2}-\cos x+C\) | |
\(\dfrac{x^2}{2}+\cos x+C\) | |
\(x^2-\cos x+C\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan x+C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) |
Nguyên hàm của hàm số \(\displaystyle\int\left(\sin x+\cos x\right)\mathrm{\,d}x\) bằng
\(-\sin x+\cos x+C\) | |
\(\sin x+\cos x+C\) | |
\(-\sin x-\cos x+C\) | |
\(\sin x-\cos x+C\) |
Cho hàm số $f(x)=1+\sin x$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\sin x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cos x+C$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
$f\left(x\right)=3x+5\sin x+2$ | |
$f\left(x\right)=3x-5\sin x-5$ | |
$f\left(x\right)=3x-5\sin x+5$ | |
$f\left(x\right)=3x+5\sin x+5$ |
Nguyên hàm $\displaystyle\displaystyle\int\sin x\mathrm{d}x$ là
$-\cos x+C$ | |
$\cos x+C$ | |
$\dfrac{1}{2}\cos2x+C$ | |
$-\cos2x+C$ |
Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?
$y=\dfrac{1}{3}x^3+\cos x$ | |
$y=2x+\cos x$ | |
$y=\dfrac{1}{3}x^3-\cos x$ | |
$y=2x-\cos x$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Tìm họ nguyên hàm của hàm số \(f(x)=3x-\sin x\).
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{3x^2}{2}+\cos x+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=3+\cos x+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{3x^2}{2}-\cos x+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=3x^2+\cos x+C\) |
Họ nguyên hàm của hàm số \(f(x)=\sin3x\) là
\(\dfrac{1}{3}\cos3x+C\) | |
\(-\dfrac{1}{3}\cos3x+C\) | |
\(-3\cos3x+C\) | |
\(3\cos3x+C\) |
\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\cot x\) và \(F\left(\dfrac{\pi}{2}\right)=0\). Giá trị của \(F\left(\dfrac{\pi}{6}\right)\) bằng
\(-\ln\left(\dfrac{\sqrt{3}}{2}\right)\) | |
\(\ln\left(\dfrac{\sqrt{3}}{2}\right)\) | |
\(\ln2\) | |
\(-\ln2\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x-C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+3C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\dfrac{1}{\cos^2 x}\mathrm{\,d}x=\tan x-5+C\) |
Hàm số \(F(x)=2\sin x-3\cos x\) là một nguyên hàm của hàm số nào sau đây?
\(f(x)=-2\cos x-3\sin x\) | |
\(f(x)=-2\cos x+3\sin x\) | |
\(f(x)=2\cos x+3\sin x\) | |
\(f(x)=2\cos x-3\sin x\) |
Gọi \(F(x)\) là một nguyên hàm của \(f(x)=2x+\mathrm{e}^x\) thỏa mãn \(F(0)=2019\). Tính \(F(1)\).
\(\mathrm{e}+2018\) | |
\(\mathrm{e}-2018\) | |
\(\mathrm{e}+2019\) | |
\(\mathrm{e}-2019\) |