Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
![]() | \(2\) |
![]() | \(-2\) |
![]() | \(-4\) |
![]() | \(3\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
![]() | \(S=3\) |
![]() | \(S=4\) |
![]() | \(S=0\) |
![]() | \(S=1\) |
Biết \(I=\displaystyle\int\limits_1^2\dfrac{dx}{\left(2x+2\right)\sqrt{x}+2x\sqrt{x+1}}=\dfrac{\sqrt{a}-\sqrt{b}-c}{2}\) với \(a\), \(b\), \(c\) là các số nguyên dương. Tính \(P=a-b+c\).
![]() | \(P=24\) |
![]() | \(P=12\) |
![]() | \(P=18\) |
![]() | \(P=22\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x}{\sqrt{x+1}}\mathrm{\,d}x=\dfrac{a}{b}\left(c-\sqrt{2}\right)\) với \(\dfrac{a}{b}\) là phân số tối giản. Tính \(a+b+c\).
![]() | \(-1\) |
![]() | \(7\) |
![]() | \(3\) |
![]() | \(1\) |
Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng
![]() | \(0\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | \(1\) |
Biết \(I=\displaystyle\int\limits_3^4\dfrac{\mathrm{\,d}x}{x^2+x}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
![]() | \(S=6\) |
![]() | \(S=2\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |
Biết \(I=\displaystyle\int\limits_0^1\dfrac{x^2+2}{(x+2)^2}\mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
![]() | \(S=1\) |
![]() | \(S=2\) |
![]() | \(S=-1\) |
![]() | \(S=0\) |
Cho \(\displaystyle\int\limits^5_1\left|\dfrac{x-2}{x+1}\right| \mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a,\,b,\,c\) là các số nguyên. Giá trị \(P=abc\) là
![]() | \(P=-36\) |
![]() | \(P=0\) |
![]() | \(P=18\) |
![]() | \(P=-18\) |
Biết \(\displaystyle\int\limits_1^3\dfrac{x+2}{x}\mathrm{\,d}x=a+b\ln c\) với \(a\), \(b\), \(c\in\mathbb{Z}\), \(c<9\). Tính tổng \(S=a+b+c\).
![]() | \(S=6\) |
![]() | \(S=7\) |
![]() | \(S=5\) |
![]() | \(S=8\) |
Cho \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{4}}\tan^2x\mathrm{\,d}x=a-\dfrac{b\pi}{c}\) với \(a\), \(b\), \(c\) là các số nguyên dương, \(b\) và \(c\) nguyên tố cùng nhau. Giá trị của biểu thức \(T=\dfrac{a}{b}+2c\) là
![]() | \(7\) |
![]() | \(5\) |
![]() | \(9\) |
![]() | \(3\) |
Cho tích phân \(\displaystyle\int\limits_0^{\tfrac{\pi}{2}} \left(4x-1+\cos x\right)\mathrm{\,d}x=\pi\left(\dfrac{\pi}{a}-\dfrac{1}{b}\right)+c\), \((a,b,c\in\mathbb{Q})\). Tính \(a-b+c\).
![]() | \(\dfrac{1}{2}\) |
![]() | \(1\) |
![]() | \(-2\) |
![]() | \(\dfrac{1}{3}\) |
Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?
![]() | $a+2b=0$ |
![]() | $2a-b=0$ |
![]() | $a-b=0$ |
![]() | $a+b=0$ |
Biết $\displaystyle\displaystyle\int\limits_0^1x\sqrt{x^2+4}\mathrm{\,d}x=\dfrac{1}{a}\left(\sqrt{b^3}-c\right)$. Tính $Q=abc$.
![]() | $Q=120$ |
![]() | $Q=15$ |
![]() | $Q=-120$ |
![]() | $Q=40$ |
Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
![]() | $12$ |
![]() | $16$ |
![]() | $6$ |
![]() | $10$ |
Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng
![]() | \(1\) |
![]() | \(0\) |
![]() | \(2\) |
![]() | \(-3\) |
Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
![]() | \(5\) |
![]() | \(4\) |
![]() | \(3\) |
![]() | \(2\) |
Biết \(\displaystyle\int\limits_{\ln2}^{\ln5}(x+1)\mathrm{e}^x \mathrm{\,d}x=a\ln5+b\ln2\), với \(a,\,b\) là các số nguyên. Tính \(T=3a-2b\).
![]() | \(T=19\) |
![]() | \(T=-4\) |
![]() | \(T=11\) |
![]() | \(T=-16\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
![]() | \(a+b=0\) |
![]() | \(a-b=0\) |
![]() | \(a+2b=0\) |
![]() | \(2a-b=0\) |
Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
![]() | \(S=3\) |
![]() | \(S=6\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |
Biết rằng tích phân \(\displaystyle\int\limits_{0}^{1}(2x+1)\mathrm{e}^x\mathrm{\,d}x=a+b\mathrm{e}\) với \(a,\,b\in\mathbb{Z}\). Tích \(ab\) bằng
![]() | \(1\) |
![]() | \(-1\) |
![]() | \(-15\) |
![]() | \(20\) |