Cho hình phẳng $A$ giới hạn bởi đồ thị hai hàm số $y=\sqrt{x}$ và $y=\dfrac{1}{2}x$ (phần tô đậm trong hình vẽ).
Tính thể tích $V$ khối tròn xoay tạo thành khi quay hình $A$ xung quanh trục $Ox$.
![]() | $V=\dfrac{8}{3}\pi$ |
![]() | $V=\dfrac{8}{5}\pi$ |
![]() | $V=0,533$ |
![]() | $V=0,53\pi$ |
Cho hàm bậc hai \(y=f(x)\) có đồ thị như hình bên. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\) và \(Ox\) quanh \(Ox\).
![]() | \(\dfrac{4\pi}{3}\) |
![]() | \(-\dfrac{12\pi}{15}\) |
![]() | \(\dfrac{16\pi}{15}\) |
![]() | \(\dfrac{16\pi}{5}\) |
Cho \((H)\) là hình phẳng giới hạn bởi đồ thị của các hàm số \(y=\sqrt{x}\), \(y=0\), \(y=2-x\). Diện tích của \((H)\) là
![]() | \(\dfrac{4\sqrt{2}-1}{3}\) |
![]() | \(\dfrac{8\sqrt{2}+3}{6}\) |
![]() | \(\dfrac{7}{6}\) |
![]() | \(\dfrac{5}{6}\) |
Cho hình phẳng giới hạn bởi đồ thị các hàm số \(y=\sqrt{x}\), đường thẳng \(y=2-x\) và trục hoành (phần gạch chéo trong hình vẽ).
Thể tích của khối tròn xoay sinh bởi hình phẳng trên khi quay quanh trục \(Ox\) bằng
![]() | \(\dfrac{5\pi}{4}\) |
![]() | \(\dfrac{4\pi}{3}\) |
![]() | \(\dfrac{7\pi}{6}\) |
![]() | \(\dfrac{5\pi}{6}\) |
Tính diện tích \(S\) của hình phẳng (phần gạch sọc) trong hình.
![]() | \(S=\dfrac{8}{3}\) |
![]() | \(S=\dfrac{10}{3}\) |
![]() | \(S=\dfrac{11}{3}\) |
![]() | \(S=\dfrac{7}{3}\) |
Diện tích $S$ của phần hình phẳng được gạch chéo trong hình bên bằng
![]() | $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}+\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\rm{d}x-\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\mathrm{d}x+\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}-\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
Tính diện tích phần hình phẳng gạch chéo trong hình vẽ bên dưới.
![]() | $1$ |
![]() | $\dfrac{7}{6}$ |
![]() | $\dfrac{5}{3}$ |
![]() | $\dfrac{7}{5}$ |
Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành (phần gạch sọc như hình vẽ).
Mệnh đề nào sau đây là đúng?
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x$ |
![]() | $S=\left|\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x\right|$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ bên dưới.
Diện tích $S$ của miền được tô đậm như hình vẽ được tính theo công thức nào sau đây?
![]() | $S=-\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x$ |
![]() | $S=-\displaystyle\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x$ |
Một thùng rượu vang có dạng hình tròn xoay có hai đáy là hai hình tròn bằng nhau, khoảng cách giữa hai đáy bằng $80$ (cm). Đường sinh của mặt xung quanh thùng là một phần đường tròn có bán kính bằng $60$ (cm) (tham khảo hình minh họa bên).
Hỏi thùng đó có thể đựng bao nhiêu lít rượu? (làm tròn đến hàng đơn vị)
![]() | $771$ |
![]() | $385$ |
![]() | $603$ |
![]() | $905$ |
Diện tích hình phẳng giới hạn bởi hai parabol $y=x^2+3x-1$ và $y=-x^2+x+3$ được tô đậm trong hình bên có giá trị bằng
![]() | $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4x+2\right)\mathrm{\,d}x$ |
![]() | $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(2x^2+2x-4\right)\mathrm{\,d}x$ |
![]() | $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4-2x-2x^2\right)\mathrm{\,d}x$ |
![]() | $\displaystyle\displaystyle\int\limits_{-2}^{1}\left(-4x-2\right)\mathrm{\,d}x$ |
Cho hàm số $y=2^x$ có đồ thị là đường cong trong hình bên.
Diện tích $S$ của hình phẳng được tô đậm trong hình bằng
![]() | $S=\displaystyle\displaystyle\int\limits_{1}^{2}2^x\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{0}^{2}2^{2x}\mathrm{\,d}x$ |
![]() | $S=\pi\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$ |
Cho hình phẳng $D$ giới hạn bởi đồ thị của hai hàm số $y=f(x), y=g(x)$ (phần tô đậm trong hình vẽ).
Gọi $S$ là diện tích của hình phẳng $D$. Mệnh đề nào dưới đây đúng?
![]() | $S=\displaystyle\displaystyle\int\limits_{-3}^0\left[f(x)-g(x)\right]\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{-3}^0\left[g(x)-f(x)\right]\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{-3}^0\left[f(x)+g(x)\right]\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{-3}^1\left[f(x)-g(x)\right]^2\mathrm{\,d}x$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.
Diện tích phần tô đậm bằng
![]() | $\displaystyle\displaystyle\int\limits_{-2}^{1}\left|f(x)\right|\mathrm{\,d}x$ |
![]() | $\displaystyle\displaystyle\int\limits_{0}^{1}\left|f(x)\right|\mathrm{\,d}x$ |
![]() | $\displaystyle\displaystyle\int\limits_{0}^{2}\left|f(x)\right|\mathrm{\,d}x$ |
![]() | $\displaystyle\displaystyle\int\limits_{-2}^{0}\left|f(x)\right|\mathrm{\,d}x$ |
Cho hàm số $f(x)=-x^2+3$ và hàm số $g(x)=x^2-2x-1$ có đồ thị như hình vẽ.
Tích phân $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left|f(x)-g(x)\right|\mathrm{\,d}x$ bằng với tích phân nào dưới đây?
![]() | $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)-g(x)\right]\mathrm{\,d}x$ |
![]() | $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[g(x)-f(x)\right]\mathrm{\,d}x$ |
![]() | $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[\left|f(x)\right|-\left|g(x)\right|\right]\mathrm{\,d}x$ |
![]() | $I=\displaystyle\displaystyle\int\limits_{-1}^{2}\left[f(x)+g(x)\right]\mathrm{\,d}x$ |
Cho hình phẳng $\left(\mathscr{D}\right)$ giới hạn bởi đồ thị hàm số $y=\sqrt{x}$, hai đường thẳng $x=1$, $x=2$ và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay $\left(\mathscr{D}\right)$ quanh trục hoành.
![]() | $3\pi$ |
![]() | $\dfrac{3}{2}$ |
![]() | $\dfrac{2\pi}{3}$ |
![]() | $\dfrac{3\pi}{2}$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Biết hàm số $f(x)$ đạt cực trị tại hai điểm $x_1$, $x_2$ thỏa mãn $x_2=x_1+2$ và $f\left(x_1\right)+f\left(x_2\right)=0$. Gọi $S_1$ và $S_2$ là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số $\dfrac{S_1}{S_2}$ bằng
![]() | $\dfrac{3}{4}$ |
![]() | $\dfrac{5}{8}$ |
![]() | $\dfrac{3}{8}$ |
![]() | $\dfrac{3}{5}$ |
Diện tích phần hình phẳng gạch chéo trong hình vẽ trên được tính theo công thức nào dưới đây?
![]() | \(\displaystyle\int\limits_{-1}^{2}(-2x+2)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{2}(2x-2)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{2}\left(-2x^2+2x+4\right)\mathrm{\,d}x\) |
![]() | \(\displaystyle\int\limits_{-1}^{2}\left(2x^2-2x-4\right)\mathrm{\,d}x\) |
Cho hình phẳng \((D)\) giới hạn bởi đồ thị hàm số \(y=\sqrt{x}\), hai đường thẳng \(x=1\), \(x=2\) và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay \((D)\) quanh trục hoành.
![]() | \(3\pi\) |
![]() | \(\dfrac{3}{2}\) |
![]() | \(\dfrac{3\pi}{2}\) |
![]() | \(\dfrac{2\pi}{3}\) |
Tính thể tích khối tròn xoay được tạo bởi hình phẳng giới hạn bởi ba đường \(y=\sqrt{x}\), \(y=2-x\) và \(y=0\) quanh trục \(Ox\).
![]() | \(\dfrac{3\pi}{2}\) |
![]() | \(\dfrac{5\pi}{6}\) |
![]() | \(\pi\) |
![]() | \(\dfrac{2\pi}{3}\) |