Một khối trụ có khoảng cách giữa hai đáy, độ dài đường sinh và bán kính đường tròn đáy lần lượt là $h$, $\ell$, $r$. Khi đó công thức tính diện tích toàn phần của khối trụ là
$S_{\text{tp}}=\pi r(\ell+r)$ | |
$S_{\text{tp}}=2\pi r(\ell+r)$ | |
$S_{\text{tp}}=2\pi r(\ell+2r)$ | |
$S_{\text{tp}}=\pi r(2\ell+r)$ |
Cho hình trụ có bán kính đáy bằng $a$ và độ dài đường sinh $2a$. Diện tích toàn phần của hình trụ đó bằng
$6\pi a^2$ | |
$8\pi a^2$ | |
$5\pi a^2$ | |
$3\pi a^2$ |
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.
\(S_{\text{tp}}=\dfrac{9\pi a^2}{2}\) | |
\(S_{\text{tp}}=\dfrac{13\pi a^2}{6}\) | |
\(S_{\text{tp}}=9\pi a^2\) | |
\(S_{\text{tp}}=\dfrac{27\pi a^2}{2}\) |
Cho hình trụ có thiết diện qua trục là một hình vuông. Gọi \(S_1\), \(S_2\) lần lượt là diện tích xung quanh và diện tích toàn phần của hình trụ. Tính giá trị của \(\dfrac{S_1}{S_2}\).
\(\dfrac{1}{2}\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{4}\) | |
\(\dfrac{4}{5}\) |
Cho một hình trụ có thiết diện qua trục là một hình chữ nhật có diện tích bằng \(18\). Tính diện tích xung quanh của hình trụ đã cho.
\(S_{\text{xq}}=9\) | |
\(S_{\text{xq}}=18\) | |
\(S_{\text{xq}}=9\pi\) | |
\(S_{\text{xq}}=18\pi\) |
Cho hình trụ có độ dài đường sinh $\ell$ và bán kính đáy $3r$. Diện tích xung quanh của hình trụ bằng
$\pi r\ell$ | |
$4\pi r\ell$ | |
$2\pi r\ell$ | |
$6\pi r\ell$ |
Khi quay hình chữ nhật $ABCD$ xung quanh cạnh $AD$ thì đường gấp khúc $ABCD$ tạo thành một hình trụ. Bán kính hình trụ được tạo thành bằng độ dài đoạn thẳng nào dưới đây?
$AD$ | |
$AC$ | |
$AB$ | |
$BD$ |
Cho hình chữ nhật $ABCD$. Xoay đường gấp khúc $ABCD$ quanh cạnh $AB$, ta được một
hình nón | |
hình trụ | |
hình cầu | |
hình chóp |
Cho hình trụ có chiều cao $h=3$ và bán kính đáy $r=4$. Diện tích xung quanh của hình trụ đã cho bằng
$48\pi$ | |
$16\pi$ | |
$24\pi$ | |
$56\pi$ |
Một hình trụ có bán kính đáy bằng $a$, chu vi thiết diện qua trục bằng $10a$. Chiều cao của khối trụ đã cho bằng
$3a$ | |
$a$ | |
$4a$ | |
$9a$ |
Cắt một hình nón $(N)$ bởi một mặt phẳng đi qua trục ta được một tam giác đều có diện tích $4\sqrt{3}a^2$. Diện tích toàn phần của hình nón $(N)$ bằng
$3\pi a^2$ | |
$12\pi a^2$ | |
$\pi a^2$ | |
$6\pi a^2$ |
Cho hình trụ có độ dài đường sinh $\ell$ và bán kính đáy $3r$. Diện tích xung quanh của hình trụ bằng
$\pi r\ell$ | |
$4\pi r\ell$ | |
$2\pi r\ell$ | |
$6\pi r\ell$ |
Cho hình trụ có chiều cao $h=1$ và bán kính đáy $r=2$. Diện tích xung quanh của hình trụ đã cho bằng
$4\pi$ | |
$2\pi$ | |
$3\pi$ | |
$6\pi$ |
Cho hình trụ tròn xoay có hai đáy là hai hình tròn $(O,3)$ và $(O',3)$. Biết rằng tồn tại dây cung $AB$ thuộc đường tròn $(O)$ sao cho $\triangle O'AB$ là tam giác đều và mặt phẳng $(O'AB)$ hợp với đáy chứa đường tròn $(O)$ một góc $60^\circ$. Tính diện tích xung quanh $S_{\text{xq}}$ của hình nón có đỉnh $O'$, đáy là hình tròn $(O,3)$.
$S_{\text{xq}}=\dfrac{54\pi\sqrt{7}}{7}$ | |
$S_{\text{xq}}=\dfrac{81\pi\sqrt{7}}{7}$ | |
$S_{\text{xq}}=\dfrac{27\pi\sqrt{7}}{7}$ | |
$S_{\text{xq}}=\dfrac{36\pi\sqrt{7}}{7}$ |
Cho hình trụ có chiều cao $h=7$ và bán kính đáy $r=4$. Diện tích xung quanh của hình trụ bằng
$\dfrac{112\pi}{3}$ | |
$28\pi$ | |
$112\pi$ | |
$56\pi$ |
Cho hình trụ có bán kính đáy $r$ và độ dài đường sinh $\ell$. Diện tích xung quanh $S_{xq}$ của hình trụ đã cho được tính theo công thức nào dưới đây?
$S_{xq}=4\pi r\ell$ | |
$S_{xq}=2\pi r\ell$ | |
$S_{xq}=3\pi r\ell$ | |
$S_{xq}=\pi r\ell$ |
Ông Bình làm lan can ban công ngôi nhà của mình bằng một tấm kính cường lực. Tấm kính đó là một phần của mặt xung quanh của một hình trụ như hình bên.
Biết giá tiền của $1\text{ m}^2$ kính như trên là $1.500.000$ đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông Bình mua tấm kính trên là bao nhiêu?
$23.591.000$ đồng | |
$36.173.000$ đồng | |
$9.437.000$ đồng | |
$4.718.000$ đồng |
Một hình trụ có bán kính đáy $r=4$cm và độ dài đường sinh $\ell=3$cm. Diện tích xung quanh của hình trụ đó bằng
$12\pi\text{ cm}^2$ | |
$48\pi\text{ cm}^2$ | |
$24\pi\text{ cm}^2$ | |
$36\pi\text{ cm}^2$ |
Diện tích xung quanh của hình trụ có độ dài đường sinh \(\ell\) và bán kính đáy \(r\) bằng
\(4\pi r\ell\) | |
\(\pi r\ell\) | |
\(\dfrac{1}{3}\pi r\ell\) | |
\(2\pi r\ell\) |
Cho hình trụ có bán kính đáy bằng \(3\). Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng qua trục, thiết diện thu được là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng
\(18\pi\) | |
\(36\pi\) | |
\(54\pi\) | |
\(27\pi\) |