Cho hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
![]() | \(4< f(5)<5\) |
![]() | \(3< f(5)<4\) |
![]() | \(1< f(5)<2\) |
![]() | \(2< f(5)<3\) |
Cho hàm số $y=f(x)$ liên tục, thỏa mãn $f(x)=x\left(1+\dfrac{1}{\sqrt{x}}-f'(x)\right)$, $\forall x\in(0;+\infty)$ và $f(4)=\dfrac{4}{3}$. Giá trị của $\displaystyle\displaystyle\int\limits_{1}^{4}\left(x^2-1\right)f'(x)\mathrm{\,d}x$ bằng
![]() | $\dfrac{457}{15}$ |
![]() | $\dfrac{457}{30}$ |
![]() | $-\dfrac{263}{30}$ |
![]() | $-\dfrac{263}{15}$ |
Cho hàm số \(f\left(x\right)\) có \(f\left(3\right)=3\) và \(f'\left(x\right)=\dfrac{x}{x+1-\sqrt{x+1}}\), \(\forall x>0\). Khi đó \(\displaystyle\int\limits_3^8f\left(x\right)\mathrm{\,d}x\) bằng
![]() | \(7\) |
![]() | \(\dfrac{197}{6}\) |
![]() | \(\dfrac{29}{2}\) |
![]() | \(\dfrac{181}{6}\) |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, thỏa mãn $f(x)+2f(2-x)=x^2-6x+4$. Tích phân $\displaystyle\displaystyle\int\limits_{-1}^3x f^{\prime}(x)\mathrm{d}x$ bằng
![]() | $20$ |
![]() | $\dfrac{149}{3}$ |
![]() | $\dfrac{167}{3}$ |
![]() | $\dfrac{176}{9}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=x^2-3x+2\displaystyle\int\limits_{0}^{1}f(x)f'(x)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$ bằng
![]() | $\dfrac{10}{3}$ |
![]() | $-\dfrac{10}{3}$ |
![]() | $\dfrac{26}{15}$ |
![]() | $-\dfrac{26}{15}$ |
Cho hàm số $f(x)$ thỏa mãn $f(x)=x\mathrm{e}^x+\displaystyle\int\limits_{0}^{2}\left(f(x)+f'(x)-\mathrm{e}^x-1\right)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
![]() | $2\mathrm{e}^2-1$ |
![]() | $-2\mathrm{e}^2-1$ |
![]() | $-2\mathrm{e}^2+1$ |
![]() | $2\mathrm{e}^2+1$ |
Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng
![]() | $\dfrac{2}{3}$ |
![]() | $\dfrac{3}{2}$ |
![]() | $\dfrac{16}{3}$ |
![]() | $\dfrac{3}{16}$ |
Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
![]() | \(3< f(5)<4\) |
![]() | \(2< f(5)<3\) |
![]() | \(1< f(5)<2\) |
![]() | \(4< f(5)<5\) |
Cho hàm số \(f\left(x\right)\) có \(f\left(0\right)=0\) và \(f'\left(x\right)=\cos x\cdot\cos^22x\), \(\forall x\in\mathbb{R}\). Khi đó \(\displaystyle\int\limits_0^{\pi}f\left(x\right)\mathrm{\,d}x\) bằng
![]() | \(\dfrac{1042}{225}\) |
![]() | \(\dfrac{208}{225}\) |
![]() | \(\dfrac{242}{225}\) |
![]() | \(\dfrac{149}{225}\) |
Hàm số \(y=f(x)\) liên tục trên \([1;4]\) và thỏa mãn \(f(x)=\dfrac{f\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{\ln x}{x}\). Tính tích phân \(I=\displaystyle\int\limits_{3}^{4}f(x)\mathrm{\,d}x\).
![]() | \(I=3+2\ln^22\) |
![]() | \(I=\ln^2\) |
![]() | \(I=2\ln2\) |
![]() | \(I=2\ln^22\) |
Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\), có đạo hàm \(f'(x)=(x^2-1)x\) trên \(\mathbb{R}\) và thỏa mãn \(f(2)=0\). Tính \(\displaystyle\int\limits_0^1f(x)\mathrm{\,d}x\).
![]() | \(\dfrac{7}{60}\) |
![]() | \(-\dfrac{127}{60}\) |
![]() | \(\dfrac{113}{60}\) |
![]() | \(-\dfrac{7}{60}\) |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
![]() | $(1;+\infty)$ |
![]() | $(-1;2)$ |
![]() | $(2;+\infty)$ |
![]() | $(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=x(x-4)$, $\forall x\in\mathbb{R}$. Khẳng định nào dưới đây đúng?
![]() | $f(4)>f(0)$ |
![]() | $f(0)>f(2)$ |
![]() | $f(5)>f(6)$ |
![]() | $f(4)>f(2)$ |
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng
![]() | $\dfrac{7}{12}$ |
![]() | $\dfrac{45}{4}$ |
![]() | $\dfrac{1}{2}$ |
![]() | $\dfrac{71}{6}$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
![]() | $12$ |
![]() | $11$ |
![]() | $6$ |
![]() | $5$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
![]() | $3$ |
![]() | $4$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:
Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
![]() | $(1;3)$ |
![]() | $(-\infty;-3)$ |
![]() | $(3;4)$ |
![]() | $(4;5)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
![]() | $2f(0)-1$ |
![]() | $2f(-1)-4$ |
![]() | $2f(1)$ |
![]() | $2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
![]() | $f(2)+\dfrac{2}{3}$ |
![]() | $f(-1)+\dfrac{2}{3}$ |
![]() | $\dfrac{2}{3}$ |
![]() | $f(1)-\dfrac{2}{3}$ |