Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?
$7$ | |
$5$ | |
$6$ | |
$4$ |
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(f(x)=\left|x^3-3x+m\right|\) trên đoạn \(\left[0;3\right]\) bằng \(16\). Tổng tất cả các phần tử của \(S\) bằng
\(-16\) | |
\(16\) | |
\(-12\) | |
\(-2\) |
Kí hiệu $M$ và $m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2+\sqrt{4-x^2}$. Khi đó $M+m$ bằng
$\dfrac{25}{4}$ | |
$\dfrac{15}{4}$ | |
$4$ | |
$\dfrac{1}{4}$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Có bao nhiêu giá trị nguyên thuộc đoạn $[-10;10]$ của $m$ để giá trị lớn nhất của hàm số $y=\dfrac{2x+m}{x+1}$ trên đoạn $[-4;-2]$ không lớn hơn $1$?
$6$ | |
$7$ | |
$8$ | |
$5$ |
Đồ thị của hàm số $y=f(x)$ có dạng như đường cong trong hình vẽ bên.
Gọi $M$ là giá trị lớn nhất, $m$ là giá trị nhỏ nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$. Tính $P=M-2m$.
$P=5$ | |
$P=3$ | |
$P=1$ | |
$P=4$ |
Cho hàm số $f(x)=(m-1)x^4-2mx^2+1$ với $m$ là tham số thực. Nếu $\min\limits_{[0;3]}f(x)=f(2)$ thì $\max\limits_{[0;3]}f(x)$ bằng
$-\dfrac{13}{3}$ | |
$4$ | |
$-\dfrac{14}{3}$ | |
$1$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
$m\geq2$ | |
$m\leq2$ | |
$m=2$ | |
$m>2$ |
Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
$m=5$ | |
$m=\dfrac{5}{6}$ | |
$m=-5$ | |
$m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
$3< m\leq4$ | |
$1\leq m<3$ | |
$m>4$ | |
$m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
$m=-4$ | |
$m=5$ | |
$m=1$ | |
$m=4$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
$m=-4$ | |
$m=-2$ | |
$m=2$ | |
$m=4$ |
Gọi $M$ và $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\dfrac{2x+3}{x-2}$ trên đoạn $[0;1]$. Tính giá trị $M+m$.
$-2$ | |
$\dfrac{7}{2}$ | |
$-\dfrac{13}{2}$ | |
$-\dfrac{17}{3}$ |
Gọi $M,\,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x)=x^4-2x^2+3$ trên đoạn $[0;2]$. Tổng $M+m$ bằng
$11$ | |
$14$ | |
$5$ | |
$13$ |
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
$4\sqrt{2}$ | |
$2\sqrt{2}$ | |
$4$ | |
$\sqrt{2}$ |
Cho biết $$\displaystyle\int\dfrac{2x-13}{(x+1)(x-2)}\mathrm{\,d}x=a\ln|x+1|+b\ln|x-2|+C$$Mệnh đề nào sau đây đúng?
\(a-b=8\) | |
\(2a-b=8\) | |
\(a+2b=8\) | |
\(a+b=8\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
\(9\) | |
\(10\) | |
Vô số | |
\(0\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |