Ngân hàng bài tập

Bài tập tương tự

SS

Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.

$32$
$29$
$25$
$46$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Xét tất cả các số thực $x,\,y$ sao cho $a^{4x-\log_5a^2}\leq25^{40-y^2}$ với mọi số thực dương $a$. Giá trị lớn nhất của biểu thức $P=x^2+y^2+x-3y$ bằng

$\dfrac{125}{2}$
$80$
$60$
$20$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.

$m=1$
$m=4$
$m=13$
$m=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.

$m\geq2$
$m\leq2$
$m=2$
$m>2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).

\(m\leq3\)
\(m\leq-3\)
\(m\leq5\)
\(m\leq-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tập nghiệm của bất phương trình \(\log_2^2x-3\log_2x+2<0\) là khoảng \((a;b)\). Tính \(a^2+b^2\).

\(16\)
\(5\)
\(20\)
\(10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng

$13$
$18$
$5$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là

$4\sqrt{2}$
$2\sqrt{2}$
$4$
$\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số thực $x,\,y$ thỏa mãn $x^2+y^2>1$ và $\log_{x^2+y^2}(2x+4y)\geq1$. Giá trị lớn nhất của biểu thức $P=3x+y$ bằng

$5+2\sqrt{10}$
$5+4\sqrt{5}$
$5+5\sqrt{2}$
$10+2\sqrt{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?

$2011$
$2021$
$2019$
$4041$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số nghiệm nguyên của bất phương trình $\log_4(2x+3)< 2$ là

$7$
$8$
$9$
$10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của bất phương trình $\log_5x\geq2$ là

$[10;+\infty)$
$[0;+\infty)$
$[32;+\infty)$
$[25;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?

$728$
$726$
$725$
$729$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập nghiệm của bất phương trình $\log_3(2x)\ge\log_32$ là

$(0;+\infty)$
$[1;+\infty)$
$(1;+\infty)$
$(0;1]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên dương $x$ sao cho tồn tại số thực $y$ lớn hơn $1$ thỏa mãn $\big(xy^2+x-2y-1)\log y=\log\dfrac{2y-x+3}{x}$?

$3$
$1$
Vô số
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập nghiệm của bất phương trình $\log_3(x-2)\le2$ là

$S=(-\infty;11]$
$S=(2;11]$
$S=(2;8]$
$S=(-\infty;8]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$

$89$
$48$
$90$
$49$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?

$193$
$92$
$186$
$184$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập nghiệm của bất phương trình $\log(x-2)>0$ là

$(2;3)$
$(-\infty;3)$
$(3;+\infty)$
$(12;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.

$32$
$29$
$25$
$46$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự