Có bao nhiêu số nguyên $a\in(1;2022]$ sao cho tồn tại số thực $x$ thỏa mãn $\left(a^{\log_3x}-1\right)^{\log_3a}=x+1$?
$2018$ | |
$2019$ | |
$2020$ | |
$1$ |
Có bao nhiêu cặp số nguyên \((x;y)\) thỏa mãn \(0\leq x\leq2020\) và \(\log_3(3x+3)+x=2y+9^y\)?
\(2019\) | |
\(6\) | |
\(2020\) | |
\(4\) |
Có bao nhiêu cặp số nguyên $(x,y)$ với $y\in\big[0;2021^3\big]$ thỏa mãn phương trình $\log_4\left(x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}\right)=\log_2(y-x)$?
$90854$ | |
$90855$ | |
$2021^2$ | |
$2021^2-1$ |
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
$89$ | |
$48$ | |
$90$ | |
$49$ |
Có bao nhiêu số nguyên $a$ ($a\geq2$) sao cho tồn tại số thực $x$ thỏa mãn $$\left(a^{\log x}+2\right)^{\log a}=x-2?$$
$8$ | |
$9$ | |
$1$ | |
Vô số |
Có bao nhiêu số nguyên \(x\) sao cho ứng với mỗi \(x\) có không quá \(728\) số nguyên \(y\) thỏa mãn \(\log_4\left(x^2+y\right)\ge\log_3(x+y)\)?
\(59\) | |
\(58\) | |
\(116\) | |
\(115\) |
Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn $$\log_3\left(x+y\right)=\log_4\left(x^2+y^2\right)?$$
\(3\) | |
\(2\) | |
\(1\) | |
Vô số |
Phương trình \(\left(\sqrt{5}\right)^{x^2+4x+6}=\log_2{128}\) có bao nhiêu nghiệm?
\(1\) | |
\(3\) | |
\(2\) | |
\(0\) |
Có bao nhiêu số nguyên $x$ sao cho tồn tại duy nhất số thực $y$ thỏa mãn $\log_3\big(2+x+2xy-x^2\big)=\log_{\sqrt{3}}y$?
$5$ | |
$3$ | |
$4$ | |
$2$ |
Có bao nhiêu số nguyên $y\in(-2022;2022]$ để bất phương trình $2+\log_{\sqrt{3}}(y-1)\leq\log_{\sqrt{3}}\big[x^2-2(3+y)x+2y^2+24\big]$ nghiệm đúng với mọi $x\in\mathbb{R}$?
$2011$ | |
$2021$ | |
$2019$ | |
$4041$ |
Gọi $S$ là tập hợp các giá trị nguyên của $y$ sao cho ứng với mỗi $y$, tồn tại duy nhất một giá trị $x\in\left[\dfrac{3}{2};\dfrac{9}{2}\right]$ thỏa mãn $\log_3\big(x^3-6x^2+9x+y\big)=\log_2\big(-x^2+6x-5\big)$. Số phần tử của $S$ là
$7$ | |
$1$ | |
$8$ | |
$3$ |
Có bao nhiêu số nguyên dương $x$ sao cho tồn tại số thực $y$ lớn hơn $1$ thỏa mãn $\big(xy^2+x-2y-1)\log y=\log\dfrac{2y-x+3}{x}$?
$3$ | |
$1$ | |
Vô số | |
$2$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
$193$ | |
$92$ | |
$186$ | |
$184$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(3^{x^2}-9^x\right)\left[\log_3(x+25)-3\right]\leq0$?
$24$ | |
Vô số | |
$26$ | |
$25$ |
Phương trình \(2^{x-2}=3^{x^2+2x-8}\) có một nghiệm dạng \(x=\log_ab-4\) với \(a,\,b\) là các số nguyên dương thuộc khoảng \((1;5)\). Khi đó, \(a+2b\) bằng
\(6\) | |
\(9\) | |
\(14\) | |
\(7\) |
Cho \(x,\,y\) là các số thực dương thỏa mãn $$\log_9x=\log_6y=\log_4\left(2x+y\right)$$Giá trị của \(\dfrac{x}{y}\) bằng
\(2\) | |
\(\dfrac{1}{2}\) | |
\(\log_2\left(\dfrac{3}{2}\right)\) | |
\(\log_{\tfrac{3}{2}}2\) |
Có bao nhiêu số nguyên \(x\) thỏa mãn bất phương trình \(\log_{\tfrac{1}{2}}\left[\log_2\left(2-x^2\right)\right]>0\)?
Vô số | |
\(1\) | |
\(0\) | |
\(2\) |
Có bao nhiêu số nguyên trên đoạn \([0;10]\) nghiệm đúng bất phương trình \(\log_2(3x-4)>\log_2(x-1)\)?
\(9\) | |
\(10\) | |
\(8\) | |
\(11\) |
Bất phương trình \(\log_{\tfrac{4}{5}}\dfrac{2x+1}{x+5}\geq2\) có bao nhiêu nghiệm nguyên?
\(2\) | |
\(3\) | |
\(4\) | |
\(1\) |