Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
$1$ | |
$3$ | |
$4$ | |
$2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
$12$ | |
$6$ | |
$10$ | |
$8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
$12$ | |
$6$ | |
$10$ | |
$8$ |
Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.
Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là
$3$ | |
$5$ | |
$4$ | |
$6$ |
Cho hàm số bậc ba \(y=f(x)\) có đồ thị là đường cong trong hình.
Số nghiệm thực phân biệt của phương trình \(f\left(x^3f(x)\right)+1=0\) là
\(8\) | |
\(5\) | |
\(6\) | |
\(4\) |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=2$ là
$1$ | |
$0$ | |
$2$ | |
$3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.
Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
$6$ | |
$3$ | |
$4$ | |
$5$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=1$ là
$1$ | |
$2$ | |
$4$ | |
$3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là
$9$ | |
$3$ | |
$6$ | |
$7$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số nghiệm thực phân biệt của phương trình $f'\left(f(x)\right)=0$ là
$3$ | |
$4$ | |
$5$ | |
$6$ |
Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị là đường cong trong hình.
Số nghiệm thực của phương trình \(f\left(x\right)=-1\) là
\(3\) | |
\(1\) | |
\(0\) | |
\(2\) |
Cho hàm số \(y=\tan x\) có đồ thị như hình vẽ:
Khẳng định nào sau đây sai?
Hàm số đồng biến trên \(\left(-\dfrac{\pi}{2};0\right)\) | |
\(\tan x>0,\forall x\in\left(0;\dfrac{\pi}{2}\right)\) | |
Đồ thị hàm số luôn cắt trục hoành tại một điểm | |
Đồ thị hàm số nhận gốc tọa độ \(O\) làm tâm đối xứng nên hàm số \(y=\tan x\) là hàm số lẻ |
Cho đồ thị hàm số \(y=\cos2x\) có đồ thị như hình.
Mệnh đề nào sau đây sai?
Trên đoạn \(\left[0;\dfrac{\pi}{4}\right]\) hàm số có giá trị lớn nhất bằng \(1\) | |
Trên đoạn \(\left[0;\dfrac{\pi}{4}\right]\) hàm số có giá trị nhỏ nhất bằng \(-1\) | |
Trên \(\mathbb{R}\), hàm số có giá trị lớn nhất bằng \(1\) | |
Trên \(\mathbb{R}\), hàm số có giá trị nhỏ nhất bằng \(-1\) |
Cho hàm số \(f\left(x\right)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[0;\dfrac{5\pi}{2}\right]\) của phương trình \(f\left(\sin x\right)=1\) là
\(7\) | |
\(4\) | |
\(5\) | |
\(6\) |
Cho hàm số \(y=f\left(x\right)\) có đồ thị trong hình vẽ trên. Số nghiệm của phương trình \(f\left(x\right)=-1\) là
\(3\) | |
\(2\) | |
\(1\) | |
\(4\) |
Cho hàm số \(f(x)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[-\pi;2\pi\right]\) của phương trình \(2f\left(\sin x\right)+3=0\) là
\(4\) | |
\(6\) | |
\(3\) | |
\(8\) |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
$3$ | |
$2$ | |
$4$ | |
$5$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.
Tọa độ giao điểm của đồ thị đã cho và trục tung là
$(4;0)$ | |
$(0;4)$ | |
$(0;3)$ | |
$(3;0)$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số nghiệm của phương trình $f(x)-1=0$ là
$2$ | |
$1$ | |
$4$ | |
$3$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.
Giá trị của tham số $m$ để phương trình $f(x)+1=m$ có ba nghiệm phân biệt là
$0< m< 4$ | |
$1< m< 5$ | |
$-1< m< 4$ | |
$0< m< 5$ |