Đạo hàm của hàm số $y=x^{2023}$ là
![]() | $y'=2023x^{2023}$ |
![]() | $y'=2022x^{2023}$ |
![]() | $y'=2023x^{2022}$ |
![]() | $y'=\dfrac{1}{2023}x^{2022}$ |
Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$ |
![]() | $y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
Đạo hàm của hàm số $y=(x+1)^\pi$ là
![]() | $y'=\pi(x+1)^\pi$ |
![]() | $y'=(\pi-1)(x+1)^{\pi-1}$ |
![]() | $y'=\pi(x+1)^{\pi-1}$ |
![]() | $y'=(x+1)^{\pi-1}$ |
Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\pi}$ là
![]() | $y'=\pi x^{\pi-1}$ |
![]() | $y'=x^{\pi-1}$ |
![]() | $y'=\dfrac{1}{\pi}x^{\pi-1}$ |
![]() | $y'=\pi x^{\pi}$ |
Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
![]() | $y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$ |
![]() | $y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$ |
Đạo hàm của hàm số $y=x^{-3}$ là
![]() | $y'=-x^{-4}$ |
![]() | $y'=-\dfrac{1}{2}x^{-2}$ |
![]() | $y'=-\dfrac{1}{3}x^{-4}$ |
![]() | $y'=-3x^{-4}$ |
Tìm đạo hàm của hàm số $$y=\left(x^2-x+1\right)^{\tfrac{1}{3}}$$
![]() | \(y'=\dfrac{2x-1}{\sqrt[3]{\left(x^2-x+1\right)^2}}\) |
![]() | \(y'=\dfrac{1}{3\sqrt[3]{\left(x^2-x+1\right)^2}}\) |
![]() | \(y'=\dfrac{2x-1}{3\sqrt[3]{x^2-x+1}}\) |
![]() | \(y'=\dfrac{2x-1}{3\sqrt[3]{\left(x^2-x+1\right)^2}}\) |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
![]() | $1$ |
![]() | $3$ |
![]() | $2$ |
![]() | $4$ |
Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng
![]() | $\dfrac{4}{5}$ |
![]() | $\dfrac{4}{3\ln2}$ |
![]() | $\dfrac{4}{2\ln5}$ |
![]() | $2$ |
Tập xác định của hàm số $y=x^{\sqrt{2}-1}$ là
![]() | $\big(-\infty;\sqrt{2}\big)$ |
![]() | $\mathbb{R}\setminus\{0\}$ |
![]() | $\mathbb{R}$ |
![]() | $(0;+\infty)$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
![]() | $y'=\dfrac{1-\ln2x}{x^2}$ |
![]() | $y'=\dfrac{\ln2x}{2x}$ |
![]() | $y'=\dfrac{\ln2x}{x^2}$ |
![]() | $y'=\dfrac{1}{2x}$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
![]() | $3$ |
![]() | $1$ |
![]() | $2$ |
![]() | $0$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
![]() | $(-\infty;2)$ |
![]() | $(-\infty;-1)$ |
![]() | $(-1;2)$ |
![]() | $(-1;+\infty)$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
![]() | $(-\infty;0)$ |
![]() | $(-1;1)$ |
![]() | $(1;4)$ |
![]() | $(1;+\infty)$ |
Đạo hàm của hàm số $y=\ln\big(x^2+2\big)$ là
![]() | $y'=\dfrac{1}{x^2+2}$ |
![]() | $y'=\dfrac{x}{x^2+2}$ |
![]() | $y'=\dfrac{2}{x^2+2}$ |
![]() | $y'=\dfrac{2x}{x^2+2}$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:
Số điểm cực trị của hàm số đã cho bằng
![]() | $3$ |
![]() | $0$ |
![]() | $1$ |
![]() | $2$ |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
![]() | $3$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
![]() | $(1;+\infty)$ |
![]() | $(-1;2)$ |
![]() | $(2;+\infty)$ |
![]() | $(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=x(x-4)$, $\forall x\in\mathbb{R}$. Khẳng định nào dưới đây đúng?
![]() | $f(4)>f(0)$ |
![]() | $f(0)>f(2)$ |
![]() | $f(5)>f(6)$ |
![]() | $f(4)>f(2)$ |
Cho hàm số $y=\big(2x^2-1\big)^{\tfrac{1}{2}}$. Giá trị của hàm số đã cho tại điểm $x=2$ bằng
![]() | $3$ |
![]() | $\sqrt{7}$ |
![]() | $\sqrt{3}$ |
![]() | $7$ |