Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
$(-\infty;0)$ | |
$(-1;1)$ | |
$(1;4)$ | |
$(1;+\infty)$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
$(1;+\infty)$ | |
$(-1;2)$ | |
$(2;+\infty)$ | |
$(-\infty;-1)$ |
Hình bên là đồ thị hàm số $y=f'(x)$.
Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?
$(0;1)$ và $(2;+\infty)$ | |
$(1;2)$ | |
$(2;+\infty)$ | |
$(0;1)$ |
Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.
Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?
$(-1;1)$ | |
$\left(0;\dfrac{5}{2}\right)$ | |
$\left(\dfrac{5}{2};4\right)$ | |
$(-2;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.
Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng
$\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$ | |
$\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
$\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$ | |
$\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.
Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.
$\left(-\dfrac{1}{2};+\infty\right)$ | |
$\left(-\dfrac{3}{2};+\infty\right)$ | |
$\left(-\infty;\dfrac{3}{2}\right)$ | |
$\left(\dfrac{1}{2};+\infty\right)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.
Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?
$[-2;0]$ và $[2;+\infty)$ | |
$(-\infty;-2]$ và $[0;2]$ | |
$[-2;2]$ | |
$(-\infty;-2]$ và $[2;+\infty)$ |
Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.
Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng
$\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$ | |
$(0;2)$ | |
$(-\infty;-1)$ | |
$\left(\dfrac{1}{3};\dfrac{2}{3}\right)$ |
Cho hàm số \(f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình trên. Hàm số \(g(x)=f(1-2x)+x^2-x\) nghịch biến trên khoảng nào dưới đây?
\(\left(1;\dfrac{3}{2}\right)\) | |
\(\left(0;\dfrac{1}{2}\right)\) | |
\(\left(-2;-1\right)\) | |
\(\left(2;3\right)\) |
Cho hàm số \(y=f(x)\) có đồ thị hàm số \(y=f'(x)\) như hình vẽ.
Hàm số \(y=f(3-2x)\) nghịch biến trên khoảng nào sau đây:
\((-1;+\infty)\) | |
\((0;2)\) | |
\((-\infty;-1)\) | |
\((1;3)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.
Khẳng định nào sau đây đúng về hàm số \(y=f(x)\)?
Hàm số đồng biến trên khoảng \((-\infty;-1)\) | |
Hàm số đồng biến trên khoảng \((-1;0)\) | |
Hàm số đồng biến trên khoảng \((1;2)\) | |
Hàm số nghịch biến trên khoảng \((0;+\infty)\) |
Cho hàm số \(y=f(x)\). Biết rằng \(f(x)\) có đạo hàm \(f'(x)\) với đồ thị như hình vẽ.
Khẳng định nào sau đây sai?
Hàm số \(y=f(x)\) nghịch biến trên khoảng \((-\infty;-2)\) | |
Hàm số \(y=f(x)\) đồng biến trên khoảng \((1;+\infty)\) | |
Hàm số \(y=f(x)\) luôn tăng trên khoảng \((-1;1)\) | |
Hàm số \(y=f(x)\) giảm trên đoạn có độ dài bằng \(2\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ.
Mệnh đề nào sau đây là đúng?
Hàm số đồng biến trên khoảng \((-3;1)\) | |
Hàm số nghịch biến trên khoảng \((0;2)\) | |
Hàm số nghịch biến trên khoảng \((-1;0)\) | |
Hàm số đồng biến trên khoảng \((0;1)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ.
Mệnh đề nào sau đây là đúng?
Hàm số đồng biến trên khoảng \((-1;0)\) và \((1;+\infty)\) | |
Hàm số đồng biến trên khoảng \((-\infty;-1)\) và \((0;1)\) | |
Hàm số nghịch biến trên khoảng \((-1;1)\) | |
Hàm số nghịch biến trên khoảng \((-1;0)\) và \((1;+\infty)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
\((-\infty;-1)\) | |
\((0;1)\) | |
\((1;+\infty)\) | |
\((-\infty;+\infty)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
\((-2;1)\) | |
\((-1;2)\) | |
\((-2;-1)\) | |
\((-1;1)\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm khoảng đồng biến của hàm số.
\((-\infty;-2)\) và \((0;+\infty)\) | |
\((-3;+\infty)\) | |
\((-\infty;3)\) và \((0;+\infty)\) | |
\((-2;0)\) |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.
Kết luận nào sau đây đúng?
$ad>0$, $bc< 0$ | |
$ad< 0$, $bc>0$ | |
$ad< 0$, $bc< 0$ | |
$ad>0$, $bc>0$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
$y=-x^3+3x+1$ | |
$y=\dfrac{x-1}{x+1}$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^4-x^2+1$ |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.
Khẳng định nào sau đây là sai?
Hàm số đồng biến trên $(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)$ | |
Hàm số nghịch biến trên $(-1;1)$ |