Ngân hàng bài tập

Bài tập tương tự

Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).

  1. Tính thể tích khối chóp
  2. Tính khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
3 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:

  1. Thể tích của khối chóp
  2. Khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\). Biết \(AC=a\), \(BC=\dfrac{a}{2}\), \(SA=\dfrac{a\sqrt{3}}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng

\(\dfrac{a\sqrt{6}}{4}\)
\(a\sqrt{6}\)
\(\dfrac{a\sqrt{3}}{2}\)
\(\dfrac{a\sqrt{6}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB=2a\), \(AC=4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\) (minh họa như hình vẽ). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng

\(\dfrac{2a}{3}\)
\(\dfrac{a\sqrt{6}}{3}\)
\(\dfrac{a\sqrt{3}}{3}\)
\(\dfrac{a}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng

$60^{\circ}$
$30^{\circ}$
$90^{\circ}$
$45^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $SA\bot (ABCD)$, $AB=a$ và $SB=\sqrt{2}a$. Khoảng cách từ điểm $S$ đến mặt phẳng $(ABCD)$ bằng

$a$
$\sqrt{2}a$
$2a$
$\sqrt{3}a$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho tứ diện $ABCD$ có hai mặt $\left(ABC\right)$ và $\left(BCD\right)$ vuông góc với nhau. Biết rằng $\triangle ABC$ đều cạnh $2a$ và $M$ là trung điểm $BC$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $\left(BCD\right)$.

$2a$
$a\sqrt{3}$
$2a\sqrt{3}$
$\dfrac{a\sqrt{3}}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có cạnh bên $SA=a\sqrt{3}$ và hợp với đáy một góc $60^\circ$. Tính khoảng cách từ điểm $S$ đến mặt đáy.

$a\sqrt{3}$
$\dfrac{3a}{2}$
$\dfrac{a\sqrt{3}}{2}$
$2a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ vuông tại $B$, cạnh bên $SA$ vuông góc với đáy. Gọi $H$ là chân đường cao kẻ từ $A$ của tam giác $SAB$. Khẳng định nào dưới đây sai?

$SA\bot BC$
$AH\bot BC$
$AH\bot AC$
$AH\bot SC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ vuông tại $B$, cạnh bên $SA$ vuông góc với đáy. Gọi $H$ là chân đường cao kẻ từ $A$ của tam giác $SAB$. Khẳng định nào dưới đây sai?

$SA\bot\left(ABC\right)$
$AH\bot\left(ABC\right)$
$AH\bot\left(SBC\right)$
$BC\bot\left(SAB\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều và $SA$ vuông góc với mặt đáy. Tam giác $SBC$ là

Tam giác đều
Tam giác cân
Tam giác vuông cân
Tam giác vuông
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB=a\), \(BC=2a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt{15}a\) (tham khảo hình vẽ).

Góc giữa đường thẳng \(SC\) và mặt phẳng đáy bằng

\(45^\circ\)
\(30^\circ\)
\(60^\circ\)
\(90^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng

\(\dfrac{\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{7}\)
\(\dfrac{4\sqrt{14}}{7}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có $SA$ vuông góc với mặt phẳng $(ABC)$, $SA=2a$, tam giác $ABC$ vuông tại $B$, $AB=a\sqrt{3}$ và $BC=a$. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ bằng

$90^{\circ}$
$30^{\circ}$
$45^{\circ}$
$60^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo

$45^\circ$
$90^\circ$
$30^\circ$
$60^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo

$60^\circ$
$90^\circ$
$30^\circ$
$45^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc

$\widehat{SCA}$
$\widehat{SCB}$
$\widehat{SAC}$
$\widehat{ASC}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự