Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\). Biết \(AC=a\), \(BC=\dfrac{a}{2}\), \(SA=\dfrac{a\sqrt{3}}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng
![]() | \(\dfrac{a\sqrt{6}}{4}\) |
![]() | \(a\sqrt{6}\) |
![]() | \(\dfrac{a\sqrt{3}}{2}\) |
![]() | \(\dfrac{a\sqrt{6}}{2}\) |
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB=2a\), \(AC=4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\) (minh họa như hình vẽ). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng
![]() | \(\dfrac{2a}{3}\) |
![]() | \(\dfrac{a\sqrt{6}}{3}\) |
![]() | \(\dfrac{a\sqrt{3}}{3}\) |
![]() | \(\dfrac{a}{2}\) |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
![]() | $\dfrac{a\sqrt{3}}{4}$ |
![]() | $\dfrac{a\sqrt{3}}{2}$ |
![]() | $a\sqrt{3}$ |
![]() | $\dfrac{a\sqrt{3}}{3}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
![]() | $\dfrac{\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{\sqrt{3}}{2}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{2}a^3$ |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).
Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng
![]() | $60^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $90^{\circ}$ |
![]() | $45^{\circ}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $SA\bot (ABCD)$, $AB=a$ và $SB=\sqrt{2}a$. Khoảng cách từ điểm $S$ đến mặt phẳng $(ABCD)$ bằng
![]() | $a$ |
![]() | $\sqrt{2}a$ |
![]() | $2a$ |
![]() | $\sqrt{3}a$ |
Cho tứ diện $ABCD$ có hai mặt $\left(ABC\right)$ và $\left(BCD\right)$ vuông góc với nhau. Biết rằng $\triangle ABC$ đều cạnh $2a$ và $M$ là trung điểm $BC$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $\left(BCD\right)$.
![]() | $2a$ |
![]() | $a\sqrt{3}$ |
![]() | $2a\sqrt{3}$ |
![]() | $\dfrac{a\sqrt{3}}{2}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA=a\sqrt{3}$ và hợp với đáy một góc $60^\circ$. Tính khoảng cách từ điểm $S$ đến mặt đáy.
![]() | $a\sqrt{3}$ |
![]() | $\dfrac{3a}{2}$ |
![]() | $\dfrac{a\sqrt{3}}{2}$ |
![]() | $2a$ |
Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ vuông tại $B$, cạnh bên $SA$ vuông góc với đáy. Gọi $H$ là chân đường cao kẻ từ $A$ của tam giác $SAB$. Khẳng định nào dưới đây sai?
![]() | $SA\bot BC$ |
![]() | $AH\bot BC$ |
![]() | $AH\bot AC$ |
![]() | $AH\bot SC$ |
Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ vuông tại $B$, cạnh bên $SA$ vuông góc với đáy. Gọi $H$ là chân đường cao kẻ từ $A$ của tam giác $SAB$. Khẳng định nào dưới đây sai?
![]() | $SA\bot\left(ABC\right)$ |
![]() | $AH\bot\left(ABC\right)$ |
![]() | $AH\bot\left(SBC\right)$ |
![]() | $BC\bot\left(SAB\right)$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều và $SA$ vuông góc với mặt đáy. Tam giác $SBC$ là
![]() | Tam giác đều |
![]() | Tam giác cân |
![]() | Tam giác vuông cân |
![]() | Tam giác vuông |
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB=a\), \(BC=2a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt{15}a\) (tham khảo hình vẽ).
Góc giữa đường thẳng \(SC\) và mặt phẳng đáy bằng
![]() | \(45^\circ\) |
![]() | \(30^\circ\) |
![]() | \(60^\circ\) |
![]() | \(90^\circ\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng
![]() | \(\dfrac{\sqrt{14}}{14}\) |
![]() | \(\dfrac{3\sqrt{14}}{14}\) |
![]() | \(\dfrac{3\sqrt{14}}{7}\) |
![]() | \(\dfrac{4\sqrt{14}}{7}\) |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là
![]() | $\dfrac{3a^3}{16}$ |
![]() | $\dfrac{a^3}{16}$ |
![]() | $\dfrac{a^3\sqrt{3}}{16}$ |
![]() | $\dfrac{3\sqrt{3}a^3}{16}$ |
Cho hình chóp $S.ABC$ có $SA$ vuông góc với mặt phẳng $(ABC)$, $SA=2a$, tam giác $ABC$ vuông tại $B$, $AB=a\sqrt{3}$ và $BC=a$. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ bằng
![]() | $90^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $45^{\circ}$ |
![]() | $60^{\circ}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
![]() | $60^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $45^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SCA}$ |
![]() | $\widehat{SCB}$ |
![]() | $\widehat{SAC}$ |
![]() | $\widehat{ASC}$ |