Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA\bot (ABCD)$ và $SA=a$. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABCD)$ bằng
$45^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$60^\circ$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, $SA\perp(ABC)$ và $SA=a$.
Góc giữa $SB$ và $AB$ bằng
$60^{\circ}$ | |
$90^{\circ}$ | |
$135^{\circ}$ | |
$45^{\circ}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Cho hình chóp $S.ABCD$ có $SA$ vuông góc với mặt phẳng $\left(ABCD\right)$, $SA=a\sqrt{5}$, tứ giác $ABCD$ là hình chữ nhật, $AB=a$, $AD=2a$. Góc giữa đường thẳng $SC$ và mặt phẳng $\left(ABCD\right)$ bằng
$45^\circ$ | |
$30^\circ$ | |
$60^\circ$ | |
$90^\circ$ |
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\sqrt{3}\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\sqrt{2}\) (như hình minh họa trên). Góc giữa đường thẳng \(SC\) và mặt phẳng \((ABCD)\) bằng
\(45^\circ\) | |
\(30^\circ\) | |
\(60^\circ\) | |
\(90^\circ\) |
Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=2a$. Thể tích của khối tứ diện $SBCD$ là
$\dfrac{a^3}{3}$ | |
$\dfrac{a^3}{4}$ | |
$\dfrac{a^3}{6}$ | |
$\dfrac{a^3}{8}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA$ vuông góc với mặt phẳng đáy và $SA=9a$. Thể tích khối chóp $S.ABCD$ bằng
$a^3$ | |
$27a^3$ | |
$9a^3$ | |
$3a^3$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.
Khẳng định nào sau đây là đúng?
$BC\perp(SAB)$ | |
$BC\perp(SBD)$ | |
$BC\perp(SCD)$ | |
$BC\perp(SAC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, $SA$ vuông góc mặt đáy. Hình chiếu vuông góc của $SB$ lên $(ABCD)$ là
$CB$ | |
$DB$ | |
$AB$ | |
$SA$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$. Cạnh bên $SA$ vuông góc với mặt đáy và $SC=a\sqrt{5}$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABCD$.
$V=\dfrac{a^3\sqrt{3}}{3}$ | |
$V=\dfrac{a^3\sqrt{3}}{6}$ | |
$V=a^3\sqrt{3}$ | |
$V=\dfrac{a^3\sqrt{15}}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và cạnh bên $SB$ vuông góc với mặt phẳng đáy. Tính chiều cao $h$ của khối chóp, biết rằng thể tích $V=\dfrac{a^3\sqrt{2}}{3}$.
$h=a\sqrt{2}$ | |
$h=3a\sqrt{2}$ | |
$h=a\sqrt{3}$ | |
$h=\dfrac{a\sqrt{2}}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông với đường chéo $AC=a\sqrt{2}$, cạnh bên $SB$ vuông góc với mặt phẳng đáy và $SB=a\sqrt{2}$. Tính thể tích $V$ của khối chóp $S.ABCD$.
$V=\dfrac{a^3\sqrt{2}}{6}$ | |
$V=\dfrac{a^3\sqrt{2}}{4}$ | |
$V=a^3\sqrt{2}$ | |
$V=\dfrac{a^3\sqrt{2}}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, cạnh bên $SB$ vuông góc với mặt phẳng đáy và $SB=a\sqrt{2}$. Tính thể tích $V$ của khối chóp $S.ABCD$.
$V=\dfrac{a^3\sqrt{2}}{6}$ | |
$V=\dfrac{a^3\sqrt{2}}{4}$ | |
$V=a^3\sqrt{2}$ | |
$V=\dfrac{a^3\sqrt{2}}{3}$ |
Hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA$ vuông góc với mặt phẳng $\left(ABCD\right)$ và $SA=2a$. Tính diện tích mặt cầu ngoại tiếp hình chóp $S.ABCD$.
Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=a\sqrt{6}$. Thể tích của khối chóp $S.ABCD$ bằng
$a^3\sqrt{6}$ | |
$a^3\dfrac{\sqrt{6}}{3}$ | |
$a^3\dfrac{\sqrt{6}}{6}$ | |
$a^3\dfrac{\sqrt{6}}{2}$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
$V=\dfrac{7\sqrt{6}a^3}{72}$ | |
$V=\dfrac{7\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
$\dfrac{\sqrt{3}}{4}a^3$ | |
$\dfrac{\sqrt{3}}{2}a^3$ | |
$\dfrac{3\sqrt{3}}{4}a^3$ | |
$\dfrac{3\sqrt{3}}{2}a^3$ |
Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $SA=SB=SC=AC=a$, $SB$ tạo với mặt phẳng $(SAC)$ một góc $30^\circ$. Thể tích khối chóp đã cho bằng
$\dfrac{a^3}{4}$ | |
$\dfrac{a^3}{8}$ | |
$\dfrac{\sqrt{3}a^3}{12}$ | |
$\dfrac{\sqrt{3}a^3}{24}$ |