Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\begin{cases}
x=1-t\\ y=2+2t\\ z=3+t\end{cases}\) và mặt phẳng \((P)\colon x-y+3=0\). Tính số đo góc giữa đường thẳng \(d\) và mặt phẳng \((P)\).
![]() | \(60^\circ\) |
![]() | \(30^\circ\) |
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là
![]() | $\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$ |
![]() | $\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$ |
![]() | $\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$ |
![]() | $\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng
![]() | $\dfrac{7\sqrt{55}}{55}$ |
![]() | $\dfrac{\sqrt{55}}{55}$ |
![]() | $0$ |
![]() | $\dfrac{-3\sqrt{55}}{11}$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
![]() | $\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ |
![]() | $\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
![]() | $\overrightarrow{u_2}=(5;-4;-3)$ |
![]() | $\overrightarrow{u_1}=(5;16;-13)$ |
![]() | $\overrightarrow{u_3}=(5;-16;-13)$ |
![]() | $\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, cho điểm $M(3;2;-1)$ và mặt phẳng $(P)\colon x+z-2=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
![]() | $\begin{cases}x=3+t\\ y=2\\ z=-1+t\end{cases}$ |
![]() | $\begin{cases}x=3+t\\ y=2t\\ z=1-t\end{cases}$ |
![]() | $\begin{cases}x=3+t\\ y=1+2t\\ z=-t\end{cases}$ |
![]() | $\begin{cases}x=3+t\\ y=2+t\\ z=-1\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
![]() | $\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
![]() | $\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ |
![]() | $\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ |
![]() | $\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ |
![]() | $\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |
Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
![]() | $\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$ |
![]() | $\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$ |
Trong không gian $Oxyz$, cho điểm $M\left(1;-2;0\right)$ và mặt phẳng $\left(\alpha\right)\colon x+2y-2z+3=0$. Đường thẳng đi qua điểm $M$ và vuông góc với $\left(\alpha\right)$ có phương trình tham số là
![]() | $\begin{cases}x=1+t\\ y=2+2t\\ z=-2t\end{cases}$ |
![]() | $\begin{cases}x=1+t\\ y=-2+2t\\ z=2t\end{cases}$ |
![]() | $\begin{cases}x=1-t\\ y=-2-2t\\ z=2t\end{cases}$ |
![]() | $\begin{cases}x=1+t\\ y=2-2t\\ z=-2\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $A(-4;-3;3)$ và mặt phẳng $(P)\colon x+y+z=0$. Đường thẳng đi qua $A$, cắt trục $Oz$ và song song với $(P)$ có phương trình là
![]() | $\dfrac{x-4}{4}=\dfrac{y-3}{3}=\dfrac{z-3}{-7}$ |
![]() | $\dfrac{x+4}{4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x+4}{-4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$ |
![]() | $\dfrac{x+8}{4}=\dfrac{y+6}{3}=\dfrac{z-10}{-7}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là
![]() | $\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$ |
![]() | $\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ |
![]() | $\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$ |
![]() | $\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$ |
Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?
![]() | $\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$ |
![]() | $\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$ |
![]() | $\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$ |
![]() | $\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$ |
Trong không gian $Oxyz$, cho hai đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y}{1}=\dfrac{z}{-2}$, $d'\colon\begin{cases} x=-1-2t\\ y=t\\ z=-1-t \end{cases}$ và mặt phẳng $(P)\colon x-y-z=0$. Biết rằng đường thẳng $\Delta$ song song với mặt phẳng $(P)$, cắt các đường thẳng $d,\,d'$ lần lượt tại $M$ và $N$ sao cho $MN=\sqrt{2}$ (điểm $M$ không trùng với gốc tọa độ $O$). Phương trình của đường thẳng $\Delta$ là
![]() | $\begin{cases}x=\dfrac{4}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
![]() | $\begin{cases}x=-\dfrac{4}{7}+3t\\ y=\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
![]() | $\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{3}{7}-5t\end{cases}$ |
![]() | $\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $M(1;1;-2)$ và vuông góc với mặt phẳng $(P)\colon x-y-z-1=0$ là
![]() | $\dfrac{x+1}{1}=\dfrac{y+1}{-1}=\dfrac{z-2}{-1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{-2}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y-1}{-1}=\dfrac{z+2}{-1}$ |
![]() | $\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z+1}{-2}$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
![]() | \(M\left(0;0;1\right)\) |
![]() | \(M\left(2;-4;-1\right)\) |
![]() | \(M\left(4;0;3\right)\) |
![]() | \(M\left(0;-1;0\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm \(M(0;4;1)\) và vuông góc với mặt phẳng \((P)\colon2x-2y-z=0\)?
![]() | \(\begin{cases}x=-2\\y=2+4t\\z=1+t\end{cases}\) |
![]() | \(\begin{cases}x=2\\y=-2+4t\\z=-1+t\end{cases}\) |
![]() | \(\begin{cases}x=t\\y=4-t\\z=1-2t\end{cases}\) |
![]() | \(\begin{cases}x=2t\\y=4-2t\\z=1-t\end{cases}\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y+5}{-1}=\dfrac{z-3}{4}\). Phương trình nào dưới đây là hình chiếu vuông góc của đường thẳng \(d\) trên mặt phẳng \((P)\colon x+3=0\)?
![]() | \(\begin{cases}x=-3\\ y=-5-t\\ z=-3+4t\end{cases}\) |
![]() | \(\begin{cases}x=-3\\ y=-5+t\\ z=3+4t\end{cases}\) |
![]() | \(\begin{cases}x=-3\\ y=-5+2t\\ z=3-t\end{cases}\) |
![]() | \(\begin{cases}x=-3\\ y=-6-t\\ z=7+4t\end{cases}\) |
Trong không gian \(Oxyz\), viết phương trình đường thẳng giao tuyến của hai mặt phẳng \((P)\colon x+3y-z+1=0\), \((Q)\colon2x-y+z-7=0\).
![]() | \(\dfrac{x+2}{2}=\dfrac{y}{-3}=\dfrac{z+3}{-7}\) |
![]() | \(\dfrac{x-2}{2}=\dfrac{y}{3}=\dfrac{z-3}{-7}\) |
![]() | \(\dfrac{x}{-2}=\dfrac{y-3}{-3}=\dfrac{z-10}{7}\) |
![]() | \(\dfrac{x-2}{-2}=\dfrac{y}{3}=\dfrac{z-3}{7}\) |
Trong không gian \(Oxyz\), đường thẳng \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(\alpha\right)\colon x+z-5=0\) và \(\left(\beta\right)\colon x-2y-z+3=0\) có phương trình là
![]() | \(\dfrac{x+2}{1}=\dfrac{y+1}{3}=\dfrac{z}{-1}\) |
![]() | \(\dfrac{x+2}{1}=\dfrac{y+1}{2}=\dfrac{z}{-1}\) |
![]() | \(\dfrac{x-2}{1}=\dfrac{y-1}{1}=\dfrac{z-3}{-1}\) |
![]() | \(\dfrac{x-2}{1}=\dfrac{y-1}{2}=\dfrac{z-3}{-1}\) |