Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
$3$ | |
$-1$ | |
$1$ | |
$2$ |
Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
$m=5$ | |
$m=\dfrac{5}{6}$ | |
$m=-5$ | |
$m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
$3< m\leq4$ | |
$1\leq m<3$ | |
$m>4$ | |
$m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
$m=-4$ | |
$m=5$ | |
$m=1$ | |
$m=4$ |
Giá trị nhỏ nhất của hàm số \(f\left(x\right)=x^3-24x\) trên đoạn \(\left[2;19\right]\) bằng
\(32\sqrt{2}\) | |
\(-40\) | |
\(-32\sqrt{2}\) | |
\(-45\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
\(9\) | |
\(10\) | |
Vô số | |
\(0\) |
Một chất điểm chuyển động theo phương trình \(S=-2t^3+18t^2+1\), trong đó \(t\) tính bằng giây và \(S\) tính bằng mét. Mất bao lâu kể từ lúc xuất phát để chất điểm đạt vận tốc lớn nhất?
\(5\) giây | |
\(6\) giây | |
\(3\) giây | |
\(1\) giây |
Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^3-3x^2+1\) trên đoạn \([1;2]\). Khi đó tổng \(M+N\) bằng
\(2\) | |
\(-2\) | |
\(0\) | |
\(-4\) |
Giá trị nhỏ nhất \(m\) của hàm số \(y=x^3-3x+5\) trên đoạn \([2;4]\) là
\(0\) | |
\(5\) | |
\(7\) | |
\(3\) |
Giá trị lớn nhất của hàm số \(y=x(5-2x)^2\) trên đoạn \([0;3]\) là
\(\dfrac{250}{3}\) | |
\(0\) | |
\(\dfrac{250}{27}\) | |
\(\dfrac{125}{27}\) |
Tìm giá trị lớn nhất của hàm số \(f(x)=x^3-5x^2+3x-1\) trên đoạn \([2;4]\).
\(\max\limits_{[2;4]}f(x)=-5\) | |
\(\max\limits_{[2;4]}f(x)=-10\) | |
\(\max\limits_{[2;4]}f(x)=-7\) | |
\(\max\limits_{[2;4]}f(x)=1\) |
Tìm giá trị lớn nhất của hàm số \(f(x)=2x^3+3x^2-12x+2\) trên đoạn \([-1;2]\).
\(\max\limits_{[-1;2]}f(x)=10\) | |
\(\max\limits_{[-1;2]}f(x)=6\) | |
\(\max\limits_{[-1;2]}f(x)=11\) | |
\(\max\limits_{[-1;2]}f(x)=15\) |
Tìm giá trị lớn nhất của hàm số \(f(x)=x^3-8x^2+16x-9\) trên đoạn \([1;3]\).
\(\max\limits_{[1;3]}f(x)=5\) | |
\(\max\limits_{[1;3]}f(x)=\dfrac{13}{27}\) | |
\(\max\limits_{[1;3]}f(x)=-6\) | |
\(\max\limits_{[1;3]}f(x)=0\) |
Giá trị lớn nhất của hàm số \(y=x^3-3x+4\) trên đoạn \([-2;2]\) là
\(10\) | |
\(6\) | |
\(24\) | |
\(4\) |
Giá trị nhỏ nhất của hàm số \(y=x^3-3x+5\) trên đoạn \([2;4]\) là
\(3\) | |
\(7\) | |
\(5\) | |
\(0\) |
Cho hàm số \(y=x^4+8x^2+m\) có giá trị nhỏ nhất trên \([1;3]\) bằng \(6\). Tham số thực \(m\) bằng
\(-42\) | |
\(6\) | |
\(15\) | |
\(-3\) |
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(f(x)=\left|x^3-3x+m\right|\) trên đoạn \(\left[0;3\right]\) bằng \(16\). Tổng tất cả các phần tử của \(S\) bằng
\(-16\) | |
\(16\) | |
\(-12\) | |
\(-2\) |
Cho hàm số $f(x)=ax^3+cx+d$ ($a\neq0$) có $\min\limits_{x\in(0;+\infty)}f(x)=f(2)$. Tìm giá trị lớn nhất của hàm số trên đoạn $[-3;1]$.
$24a+d$ | |
$d-16a$ | |
$8a-d$ | |
$d+16a$ |
Giá trị nhỏ nhất của hàm số $y=x^3-3x^2$ trên đoạn $[1;5]$ bằng
$50$ | |
$-4$ | |
$-45$ | |
$-2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |