Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
$m=5$ | |
$m=\dfrac{5}{6}$ | |
$m=-5$ | |
$m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
$m=-4$ | |
$m=5$ | |
$m=1$ | |
$m=4$ |
Có bao nhiêu giá trị nguyên thuộc đoạn $[-10;10]$ của $m$ để giá trị lớn nhất của hàm số $y=\dfrac{2x+m}{x+1}$ trên đoạn $[-4;-2]$ không lớn hơn $1$?
$6$ | |
$7$ | |
$8$ | |
$5$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
$m=-4$ | |
$m=-2$ | |
$m=2$ | |
$m=4$ |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
\(9\) | |
\(10\) | |
Vô số | |
\(0\) |
Cho hàm số \(y=\dfrac{3x-1}{x+2}\). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn \([0;2]\). Khi đó \(4M-2m\) bằng
\(10\) | |
\(6\) | |
\(5\) | |
\(4\) |
Cho hàm số \(f\left(x\right)=\dfrac{x+m}{x+1}\) (\(m\) là tham số thực). Gọi \(S\) là tập hợp tất cả các giá trị của m sao cho $$\max\limits_{[0;1]}\left|f\left(x\right)\right|+\min\limits_{[0;1]}\left|f\left(x\right)\right|=2.$$Số phần tử của \(S\) là
\(6\) | |
\(2\) | |
\(1\) | |
\(4\) |
Cho hàm số \(y=x^4+8x^2+m\) có giá trị nhỏ nhất trên \([1;3]\) bằng \(6\). Tham số thực \(m\) bằng
\(-42\) | |
\(6\) | |
\(15\) | |
\(-3\) |
Cho hàm số \(y=\dfrac{x-m}{x+1}\) thỏa \(\min\limits_{[0;1]}y+\max\limits_{[0;1]}y=5\). Tham số thực \(m\) thuộc tập nào dưới đây?
\([2;4)\) | |
\((-\infty;2)\) | |
\([4;6)\) | |
\([6;+\infty)\) |
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\dfrac{1-x}{x+1}\) trên \([-3;-2]\) lần lượt bằng
\(2\) và \(-3\) | |
\(-3\) và \(2\) | |
\(3\) và \(-2\) | |
\(-2\) và \(-3\) |
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(f(x)=\left|x^3-3x+m\right|\) trên đoạn \(\left[0;3\right]\) bằng \(16\). Tổng tất cả các phần tử của \(S\) bằng
\(-16\) | |
\(16\) | |
\(-12\) | |
\(-2\) |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
$3$ | |
$-1$ | |
$1$ | |
$2$ |
Cho hàm số $f(x)=(m-1)x^4-2mx^2+1$ với $m$ là tham số thực. Nếu $\min\limits_{[0;3]}f(x)=f(2)$ thì $\max\limits_{[0;3]}f(x)$ bằng
$-\dfrac{13}{3}$ | |
$4$ | |
$-\dfrac{14}{3}$ | |
$1$ |
Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?
$7$ | |
$5$ | |
$6$ | |
$4$ |
Cho $x,\,y$ là các số thực thỏa mãn $(x-3)^2+(y-1)^2=5$. Giá trị nhỏ nhất của biểu thức $P=\dfrac{3y^2+4xy+7x+4y-1}{x+2y+1}$ là
$2\sqrt{3}$ | |
$\dfrac{114}{11}$ | |
$\sqrt{3}$ | |
$3$ |
Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.
$M+m=\dfrac{10}{3}$ | |
$M+m=\dfrac{16}{3}$ | |
$M+m=3$ | |
$M+m=5$ |
Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng
$-4$ | |
$-\dfrac{1}{2}$ | |
$-6$ | |
$1-4\sqrt{2}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
$2f(0)-1$ | |
$2f(-1)-4$ | |
$2f(1)$ | |
$2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
$f(2)+\dfrac{2}{3}$ | |
$f(-1)+\dfrac{2}{3}$ | |
$\dfrac{2}{3}$ | |
$f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.
Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
$x_0=-4$ | |
$x_0=-1$ | |
$x_0=3$ | |
$x_0=-3$ |