Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).
![]() | \(m\leq3\) |
![]() | \(m\leq-3\) |
![]() | \(m\leq5\) |
![]() | \(m\leq-1\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
![]() | \(3\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | \(5\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
![]() | \(9\) |
![]() | \(10\) |
![]() | Vô số |
![]() | \(0\) |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
![]() | $12$ |
![]() | $11$ |
![]() | $6$ |
![]() | $5$ |
Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
![]() | $m=5$ |
![]() | $m=\dfrac{5}{6}$ |
![]() | $m=-5$ |
![]() | $m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
![]() | $3< m\leq4$ |
![]() | $1\leq m<3$ |
![]() | $m>4$ |
![]() | $m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
![]() | $m=-4$ |
![]() | $m=5$ |
![]() | $m=1$ |
![]() | $m=4$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
![]() | $m=-4$ |
![]() | $m=-2$ |
![]() | $m=2$ |
![]() | $m=4$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
![]() | $\left(-\infty;-\dfrac{14}{15}\right)$ |
![]() | $\left(-\infty;-\dfrac{14}{15}\right]$ |
![]() | $\left[-2;-\dfrac{14}{15}\right]$ |
![]() | $\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
![]() | $(-\infty;6]$ |
![]() | $(-\infty;3]$ |
![]() | $(-\infty;3)$ |
![]() | $[3;6]$ |
Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
![]() | $4\sqrt{2}$ |
![]() | $2\sqrt{2}$ |
![]() | $4$ |
![]() | $\sqrt{2}$ |
Tìm giá trị lớn nhất của hàm số \(f(x)=-x^4-3x^2+2020\) trên \(\mathbb{R}\).
![]() | \(\max\limits_{\mathbb{R}}f(x)=2020\) |
![]() | \(\max\limits_{\mathbb{R}}f(x)=2021\) |
![]() | \(\max\limits_{\mathbb{R}}f(x)=2019\) |
![]() | \(\max\limits_{\mathbb{R}}f(x)=2018\) |
Hàm số \(y=x^4+2x^2-3\)
![]() | không có giá trị lớn nhất và giá trị nhỏ nhất |
![]() | không có cực trị |
![]() | có giá trị nhỏ nhất |
![]() | có giá trị lớn nhất |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(y=x-1+\dfrac{4}{x-1}\) trên khoảng \((1;+\infty)\).
![]() | \(m=5\) |
![]() | \(m=4\) |
![]() | \(m=2\) |
![]() | \(m=3\) |