Cho $x,\,y$ là hai số thực bất kì thuộc đoạn $[1;3]$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S=\dfrac{x}{y}+\dfrac{y}{x}$. Tính $M+m$.
![]() | $M+m=\dfrac{10}{3}$ |
![]() | $M+m=\dfrac{16}{3}$ |
![]() | $M+m=3$ |
![]() | $M+m=5$ |
Cho hai số thực $x,\,y$ thay đổi thỏa mãn điều kiện $x^2+y^2=2$. Gọi $M$, $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=2\big(x^3+y^3\big)-3xy$. Giá trị của $M+m$ bằng
![]() | $-4$ |
![]() | $-\dfrac{1}{2}$ |
![]() | $-6$ |
![]() | $1-4\sqrt{2}$ |
Cho \(x,\,y\) là hai số không âm thỏa mãn \(x+y=2\). Tìm giá trị nhỏ nhất của biểu thức $$P=\dfrac{x^3}{3}+x^2+y^2-x+1$$
![]() | \(\dfrac{17}{3}\) |
![]() | \(5\) |
![]() | \(\dfrac{115}{3}\) |
![]() | \(\dfrac{7}{3}\) |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
![]() | $3$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
![]() | $2f(0)-1$ |
![]() | $2f(-1)-4$ |
![]() | $2f(1)$ |
![]() | $2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
![]() | $f(2)+\dfrac{2}{3}$ |
![]() | $f(-1)+\dfrac{2}{3}$ |
![]() | $\dfrac{2}{3}$ |
![]() | $f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.
Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
![]() | $x_0=-4$ |
![]() | $x_0=-1$ |
![]() | $x_0=3$ |
![]() | $x_0=-3$ |
Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?
![]() | $\min\limits_{[-2;2]}h(x)=h(-2)$ |
![]() | $\max\limits_{[0;4]}h(x)=h(0)$ |
![]() | $\min\limits_{[-1;2]}h(x)=h(-1)$ |
![]() | $h(2)< h(4)< h(0)$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
![]() | $m\geq2$ |
![]() | $m\leq2$ |
![]() | $m=2$ |
![]() | $m>2$ |
Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
![]() | $m=5$ |
![]() | $m=\dfrac{5}{6}$ |
![]() | $m=-5$ |
![]() | $m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
![]() | $3< m\leq4$ |
![]() | $1\leq m<3$ |
![]() | $m>4$ |
![]() | $m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
![]() | $m=-4$ |
![]() | $m=5$ |
![]() | $m=1$ |
![]() | $m=4$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
![]() | $m=-4$ |
![]() | $m=-2$ |
![]() | $m=2$ |
![]() | $m=4$ |
Một chất điểm chuyển động theo quy luật $S=-\dfrac{1}{3}t^3+4t^2+\dfrac{2}{3}$ với $t$(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và $S$(mét) là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian $8$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu?
![]() | $86$(m/s) |
![]() | $16$(m/s) |
![]() | $\dfrac{2}{3}$(m/s) |
![]() | $43$(m/s) |
Một vật chuyển động theo quy luật $s=-\dfrac{1}{2}t^3+6t^2$ với $t$ (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và $s$ (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian $6$ giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?
![]() | $24$(m/s) |
![]() | $108$(m/s) |
![]() | $64$(m/s) |
![]() | $18$(m/s) |
Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.
Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng
![]() | $f(0)$ |
![]() | $f(-3)+6$ |
![]() | $f(2)-4$ |
![]() | $f(4)-8$ |
Xét các số thực không âm \(x\) và \(y\) thỏa mãn \(2x+y\cdot4^{x+y-1}\geq3\). Giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+4x+6y\) bằng
![]() | \(\dfrac{33}{4}\) |
![]() | \(\dfrac{65}{8}\) |
![]() | \(\dfrac{49}{8}\) |
![]() | \(\dfrac{57}{8}\) |
Giá trị nhỏ nhất của hàm số \(f\left(x\right)=x^3-24x\) trên đoạn \(\left[2;19\right]\) bằng
![]() | \(32\sqrt{2}\) |
![]() | \(-40\) |
![]() | \(-32\sqrt{2}\) |
![]() | \(-45\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là
![]() | \(9\) |
![]() | \(10\) |
![]() | Vô số |
![]() | \(0\) |