Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
\(2\) | |
\(-2\) | |
\(-4\) | |
\(3\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
\(S=3\) | |
\(S=4\) | |
\(S=0\) | |
\(S=1\) |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
$-2$ | |
$\dfrac{1}{2}$ | |
$0$ | |
$-\dfrac{1}{2}$ |
Đạo hàm của hàm số $y=\dfrac{\sin^2x-\cos^2x}{\sin x\cdot\cos x}$ tại điểm $x=\dfrac{\pi}{6}$ bằng
$-\dfrac{8}{3}$ | |
$\dfrac{8}{3}$ | |
$\dfrac{16}{3}$ | |
$-\dfrac{16}{3}$ |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
$-77$ | |
$-17$ | |
$103$ | |
$43$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
$\dfrac{23}{3}$ | |
$\dfrac{23}{6}$ | |
$\dfrac{17}{6}$ | |
$\dfrac{17}{3}$ |
Cho hàm số $y=\sin^2x$. Tính $y^{\left(2018\right)}\left(\pi\right)$.
$y^{\left(2018\right)}\left(\pi\right)=2^{2017}$ | |
$y^{\left(2018\right)}\left(\pi\right)=2^{2018}$ | |
$y^{\left(2018\right)}\left(\pi\right)=-2^{2017}$ | |
$y^{\left(2018\right)}\left(\pi\right)=-2^{2018}$ |
Cho hàm số $f\left(x\right)=\cos2x$. Tính $P=f''\left(\pi\right)$.
$P=4$ | |
$P=0$ | |
$P=-4$ | |
$P=-1$ |
Cho hàm số $y=\cos^2x$. Khi đó $y^{\left(3\right)}\left(\dfrac{\pi}{3}\right)$ bằng
$-2$ | |
$2$ | |
$2\sqrt{3}$ | |
$-2\sqrt{3}$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
$y'=12\cos4x-2\sin4x$ | |
$y'=12\cos4x+2\sin4x$ | |
$y'=-12\cos4x+2\sin4x$ | |
$y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
$y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
$f'\left(x\right)=2\sin4x-3\sin3x$ | |
$f'\left(x\right)=2\sin4x+3\sin3x$ | |
$f'\left(x\right)=\sin4x+3\sin3x$ | |
$f'\left(x\right)=2\sin2x+3\sin3x$ |
Tìm đạo hàm $y'$ của hàm số $y=\sin x+\cos x$.
$y'=2\cos x$ | |
$y'=2\sin x$ | |
$y'=\sin x-\cos x$ | |
$y'=\cos x-\sin x$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
$y'=6\cos3x-2\sin2x$ | |
$y'=2\cos3x+\sin2x$ | |
$y'=-6\cos3x+2\sin2x$ | |
$y'=2\cos3x-\sin2x$ |
Cho hàm số $y=\begin{cases}x^2+ax+b&\text{khi }x\ge2\\ x^3-x^2-8x+10&\text{khi }x<2\end{cases}$. Biết hàm số có đạo hàm tại điểm $x=2$. Giá trị của $a^2+b^2$ bằng
$20$ | |
$17$ | |
$18$ | |
$25$ |
Cho hàm số $f\left(x\right)=\begin{cases}ax^2+bx+1&\text{khi }x\ge0\\ ax-b-1&\text{khi }x<0\end{cases}$. Khi hàm số $f\left(x\right)$ có đạo hàm tại $x_0=0$, hãy tính $T=a+2b$.
$T=-4$ | |
$T=0$ | |
$T=-6$ | |
$T=4$ |
Hàm số nào sau đây không có đạo hàm trên $\mathbb{R}$?
$y=\left|x-1\right|$ | |
$y=\sqrt{x^2-4x+5}$ | |
$y=\sin x$ | |
$y=\sqrt{2-\cos x}$ |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{x^2}{2} &\text{khi }x\leq1\\
ax+b &\text{khi }x>1
\end{cases}$$Tìm tất cả các giá trị của \(a,\,b\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=1\).
\(a=1,\;b=-\dfrac{1}{2}\) | |
\(a=\dfrac{1}{2},\;b=\dfrac{1}{2}\) | |
\(a=\dfrac{1}{2},\;b=-\dfrac{1}{2}\) | |
\(a=1,\;b=\dfrac{1}{2}\) |
Cho hàm số $$f(x)=\begin{cases}
mx^2+2x+2 &\text{khi }x>0\\
nx+1 &\text{khi }x\leq0
\end{cases}$$Tìm tất cả các giá trị của \(m\) và \(n\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=0\).
Không tồn tại | |
\(m=2,\;n\in\mathbb{R}\) | |
\(n=2,\;m\in\mathbb{R}\) | |
\(m=n=2\) |