Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon3x-2y-1=0$. Ảnh của $d$ qua phép quay tâm $O$ góc $180^\circ$ có phương trình
$3x+2y+1=0$ | |
$-3x+2y-1=0$ | |
$3x+2y-1=0$ | |
$3x-2y-1=0$ |
Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon y=x$. Tìm ảnh của $d$ qua phép quay tâm $O$ góc $90^\circ$.
$d'\colon y=2x$ | |
$d'\colon y=-x$ | |
$d'\colon y=-2x$ | |
$d'\colon y=x$ |
Trong măt phẳng $Oxy$, cho đường thẳng $d$ có phương trình $3x+2y-6=0$. Ảnh của đường thẳng $d$ qua phép tịnh tiến theo $\overrightarrow{v}=(-1;3)$ là đường thẳng $d’$ có phương trình
$3x+2y-12=0$ | |
$2x+3y-3=0$ | |
$2x+3y+1=0$ | |
$3x+2y-9=0$ |
Trong mặt phẳng $Oxy$, phép quay tâm $O$ góc quay $-90^\circ$ biến $M(-3;5)$ thành điểm có tọa độ
$(-5;-3)$ | |
$(5;-3)$ | |
$(5;3)$ | |
$(-5;3)$ |
Trong mặt phẳng $Oxy$, cho điểm $A(1;0)$. Ảnh của $A$ qua phép quay tâm $O$ góc quay $90^\circ$ là
$A’(0;-1)$ | |
$A’(-1;0)$ | |
$A’(0;1)$ | |
$A’(1;1)$ |
Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon2x+y-4=0$ và điểm $I(-1;2)$. Tìm ảnh $d'$ của $d$ qua phép vị tự tâm $I$ tỉ số $k=-2$.
$2x-y+4=0$ | |
$-2x+y+8=0$ | |
$2x+y+8=0$ | |
$2x+y+4=0$ |
Trong mặt phẳng $Oxy$, cho bốn điểm $A(-1;2)$, $B(3;-1)$, $A'(9;-4)$, $B'(5;-1)$. Phép quay tâm $I(a;b)$ biến điểm $A$ thành $A'$, điểm $B$ thành $B'$, khi đó giá trị $a+b$ bằng
$5$ | |
$4$ | |
$3$ | |
$2$ |
Trong mặt phẳng $Oxy$, cho đường tròn $(\mathscr{C})\colon x^2+y^2-4x-2y=0$. Phép quay tâm $I$ góc $\dfrac{\pi}{4}$ biến $(\mathscr{C})$ thành chính nó. Tìm tọa độ tâm quay $I$.
$I(0;0)$ | |
$I(2;1)$ | |
$I(1;2)$ | |
$I(1;1)$ |
Trong mặt phẳng $Oxy$, điểm $M'(3;-2)$ là ảnh của điểm nào sau đây qua phép quay $Q_{(O,180^\circ)}$?
$M(3;2)$ | |
$M(2;3)$ | |
$M(-3;2)$ | |
$M(-2;-3)$ |
Trong mặt phẳng $Oxy$, cho các điểm $I(3;1)$ và $J(-1;-1)$. Tìm ảnh của $J$ qua phép quay $\mathrm{Q}_{(I,-90^\circ)}$.
$J'(-3;3)$ | |
$J'(1;-5)$ | |
$J'(1;5)$ | |
$J'(5;-3)$ |
Trong mặt phẳng $Oxy$, ảnh của đường tròn $(\mathscr{C})\colon(x+2)^2+(y-3)^2=9$ qua phép quay $\mathrm{Q}_{(O,90^\circ)}$ là đường tròn có phương trình
$(x+2)^2+(y+3)^2=9$ | |
$(x+3)^2+(y+2)^2=9$ | |
$(x-3)^2+(y+2)^2=9$ | |
$(x+2)^2+(y-3)^2=9$ |
Trong mặt phẳng $Oxy$, cho điểm $M(2;2)$. Trong bốn điểm sau, điểm nào là ảnh của $M$ qua phép quay tâm $O$ góc $-45^\circ$?
$M'\left(2;-2\sqrt{2}\right)$ | |
$M'\left(2\sqrt{2};2\right)$ | |
$M'\left(0;2\sqrt{2}\right)$ | |
$M'\left(2\sqrt{2};0\right)$ |
Trong mặt phẳng $Oxy$, ảnh của điểm $M(3;4)$ qua phép quay $\mathrm{Q}_{(O,45^\circ)}$ là
$M'\left(\dfrac{7\sqrt{2}}{2};\dfrac{7\sqrt{2}}{2}\right)$ | |
$M'\left(-\dfrac{\sqrt{2}}{2};\dfrac{7\sqrt{2}}{2}\right)$ | |
$M'\left(-\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right)$ | |
$M'\left(\dfrac{7\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right)$ |
Trong mặt phẳng $Oxy$, cho điểm $B(-3;6)$. Tìm tọa độ điểm $E$ sao cho $B$ là ảnh của điểm $E$ qua phép quay tâm $O$ góc $-90^\circ$.
$E(6;3)$ | |
$E(-3;-6)$ | |
$E(-6;-3)$ | |
$E(3;6)$ |
Trong mặt phẳng $Oxy$, ảnh của điểm $M(-6;1)$ qua phép quay $\mathrm{Q}_{(O,-90^\circ)}$ là
$M'(1;6)$ | |
$M'(-1;-6)$ | |
$M'(-6;-1)$ | |
$M'(6;1)$ |
Trong mặt phẳng $Oxy$, phép quay tâm $O$ góc quay $90^\circ$ biến điểm $M(-1;2)$ thành điểm $M'$ có tọa độ là
$(2;1)$ | |
$(2;-1)$ | |
$(-2;-1)$ | |
$(-2;1)$ |
Trong mặt phẳng $Oxy$, cho hai đường thẳng song song $d\colon2x-3y-1=0$ và $d'\colon2x-3y+5=0$. Phép tịnh tiến theo vectơ nào sau đây không thể biến $d$ thành $d'$?
$\overrightarrow{u}=(0;2)$ | |
$\overrightarrow{u}=(-3;0)$ | |
$\overrightarrow{u}=(3;4)$ | |
$\overrightarrow{u}=(-1;1)$ |
Trong mặt phẳng $Oxy$, cho hai đường thẳng song song $d\colon2x-y+4=0$ và $d'\colon2x-y+1=0$. Tìm giá trị thực của tham số $m$ để phép tịnh tiến theo vectơ $\overrightarrow{u}=(m;-3)$ biến đường thẳng $d$ thành đường thẳng $d'$.
$m=1$ | |
$m=2$ | |
$m=3$ | |
$m=4$ |
Trong mặt phẳng $Oxy$, cho đường thẳng $d\colon2x-y+1=0$. Để phép tịnh tiến theo vectơ $\overrightarrow{v}$ biến $d$ thành chính nó thì $\overrightarrow{v}$ có thể là vectơ nào sau đây?
$\overrightarrow{v}=(2;1)$ | |
$\overrightarrow{v}=(2;-1)$ | |
$\overrightarrow{v}=(1;2)$ | |
$\overrightarrow{v}=(-1;2)$ |
Trong mặt phẳng $Oxy$, cho hai đường thẳng song song $d\colon x+y+1=0$ và $d'\colon x+y-1=0$. Biết rằng phép tịnh tiến $\mathrm{T}_{\overrightarrow{v}}$ biến đường thẳng $d$ thành đường thẳng $d'$ và vectơ $\overrightarrow{v}$ cùng phương với vectơ đơn vị $\overrightarrow{i}$. Hãy tìm tọa độ vectơ $\overrightarrow{v}$.
$\overrightarrow{v}=(2;0)$ | |
$\overrightarrow{v}=(0;2)$ | |
$\overrightarrow{v}=(0;-2)$ | |
$\overrightarrow{v}=(-2;0)$ |