Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
![]() | $1$ |
![]() | $3$ |
![]() | $4$ |
![]() | $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
![]() | $12$ |
![]() | $6$ |
![]() | $10$ |
![]() | $8$ |
Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.
Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là
![]() | $3$ |
![]() | $5$ |
![]() | $4$ |
![]() | $6$ |
Cho hàm số bậc ba \(y=f(x)\) có đồ thị là đường cong trong hình.
Số nghiệm thực phân biệt của phương trình \(f\left(x^3f(x)\right)+1=0\) là
![]() | \(8\) |
![]() | \(5\) |
![]() | \(6\) |
![]() | \(4\) |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
![]() | $3$ |
![]() | $4$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.
Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
![]() | $6$ |
![]() | $3$ |
![]() | $4$ |
![]() | $5$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
![]() | $4$ |
![]() | $5$ |
![]() | $6$ |
![]() | $7$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
![]() | $5$ |
![]() | $4$ |
![]() | $6$ |
![]() | $7$ |
Cho hàm số \(f\left(x\right)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[0;\dfrac{5\pi}{2}\right]\) của phương trình \(f\left(\sin x\right)=1\) là
![]() | \(7\) |
![]() | \(4\) |
![]() | \(5\) |
![]() | \(6\) |
Cho hàm số \(f(x)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[-\pi;2\pi\right]\) của phương trình \(2f\left(\sin x\right)+3=0\) là
![]() | \(4\) |
![]() | \(6\) |
![]() | \(3\) |
![]() | \(8\) |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=2$ là
![]() | $1$ |
![]() | $0$ |
![]() | $2$ |
![]() | $3$ |
Cho hàm số trùng phương $f(x)=ax^4+bx^2+c$ có đồ thị như hình vẽ.
Hỏi đồ thị hàm số $y=\dfrac{2022}{\big[f(x)\big]^2+2f(x)-3}$ có tổng cộng bao nhiêu tiệm cận đứng?
![]() | $4$ |
![]() | $3$ |
![]() | $5$ |
![]() | $2$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=1$ là
![]() | $1$ |
![]() | $2$ |
![]() | $4$ |
![]() | $3$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\big(x^2-8x+m\big)$ có $5$ điểm cực trị.
![]() | $15$ |
![]() | $16$ |
![]() | $17$ |
![]() | $18$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng
![]() | $2f(0)-1$ |
![]() | $2f(-1)-4$ |
![]() | $2f(1)$ |
![]() | $2f(2)-1$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.
Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng
![]() | $f(2)+\dfrac{2}{3}$ |
![]() | $f(-1)+\dfrac{2}{3}$ |
![]() | $\dfrac{2}{3}$ |
![]() | $f(1)-\dfrac{2}{3}$ |
Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.
Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm
![]() | $x_0=-4$ |
![]() | $x_0=-1$ |
![]() | $x_0=3$ |
![]() | $x_0=-3$ |
Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.
Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?
![]() | $\min\limits_{[-2;2]}h(x)=h(-2)$ |
![]() | $\max\limits_{[0;4]}h(x)=h(0)$ |
![]() | $\min\limits_{[-1;2]}h(x)=h(-1)$ |
![]() | $h(2)< h(4)< h(0)$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là
![]() | $5$ |
![]() | $3$ |
![]() | $8$ |
![]() | $2$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.
Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.
![]() | $5$ |
![]() | $3$ |
![]() | $7$ |
![]() | $11$ |