Gọi tam giác cong \(OAB\) là hình phẳng giới hạn bởi đồ thị các hàm số \(y=2x^2\), \(y=3-x\), \(y=0\) (như hình vẽ).
Tính diện tích \(S\) của tam giác cong \(OAB\).
\(S=\dfrac{8}{3}\) | |
\(S=\dfrac{4}{3}\) | |
\(S=\dfrac{5}{3}\) | |
\(S=\dfrac{10}{3}\) |
Tính diện tích hình phẳng giới hạn bởi các đường \(y=x^2\), \(y=\dfrac{x^2}{8}\), \(y=\dfrac{27}{x}\).
\(\dfrac{63}{8}\) | |
\(27\ln2-\dfrac{63}{8}\) | |
\(27\ln2\) | |
\(27\ln2-\dfrac{63}{4}\) |
Tính diện tích hình phẳng giới hạn bởi các đường \(y=x^2\), \(y=-\dfrac{1}{3}x+\dfrac{4}{3}\) và trục hoành như hình vẽ.
\(\dfrac{7}{3}\) | |
\(\dfrac{56}{3}\) | |
\(\dfrac{39}{2}\) | |
\(\dfrac{11}{6}\) |
Tính diện tích phần hình phẳng gạch chéo (tam giác cong \(OAB\)) trong hình vẽ.
\(\dfrac{5}{6}\) | |
\(\dfrac{5\pi}{6}\) | |
\(\dfrac{8}{15}\) | |
\(\dfrac{8\pi}{15}\) |
Diện tích của hình phẳng giới hạn bởi các đường \(y=\sqrt{x}\), \(y=2-x\) và trục hoành bằng
\(\dfrac{5}{6}\) | |
\(\dfrac{5\pi}{6}\) | |
\(\dfrac{7}{6}\) | |
\(\dfrac{7\pi}{6}\) |
Tính diện tích \(S\) của hình phẳng (phần gạch sọc) trong hình.
\(S=\dfrac{8}{3}\) | |
\(S=\dfrac{10}{3}\) | |
\(S=\dfrac{11}{3}\) | |
\(S=\dfrac{7}{3}\) |
Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=-x^3+3x^2-4\) và trục hoành.
\(S=\dfrac{27}{4}\) | |
\(S=\dfrac{27\pi}{4}\) | |
\(S=4\) | |
\(S=1\) |
Tính diện tích miền phẳng giới hạn bởi các đường \(y=x^3+2x+1\), trục hoành, \(x=1\) và \(x=2\).
\(\dfrac{31}{4}\) | |
\(\dfrac{49}{4}\) | |
\(\dfrac{21}{4}\) | |
\(\dfrac{39}{4}\) |
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng
$\dfrac{7}{12}$ | |
$\dfrac{45}{4}$ | |
$\dfrac{1}{2}$ | |
$\dfrac{71}{6}$ |
Diện tích hình phẳng giới hạn bởi đồ thị của hàm số $y=x^5$, trục hoành và hai đường thẳng $x=-1$, $x=1$ bằng
$\dfrac{3}{2}$ | |
$\dfrac{1}{3}$ | |
$7$ | |
$5$ |
Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y=\cos{x}+2$, trục hoành và các đường thẳng $x=0$, $x=\dfrac{\pi}{4}$.
$S=\dfrac{\pi}{2}-\dfrac{\sqrt{2}}{2}$ | |
$S=\dfrac{\pi}{4}+\dfrac{7}{10}$ | |
$S=\dfrac{\pi}{2}+\dfrac{\sqrt{2}}{2}$ | |
$S=\dfrac{\pi}{4}+\dfrac{\sqrt{2}}{2}$ |
Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=\mathrm{e}^x$ và các đường thẳng $y=0$, $x=0$, $x=2$ bằng
$\pi\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^x\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^{2x}\mathrm{\,d}x$ | |
$\pi\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^{2x}\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^x\mathrm{\,d}x$ |
Cho hàm số $y=x^4-4x^2+m$. Tìm $m$ để đồ thị của hàm số cắt trục hoành tại $4$ điểm phân biệt sao cho hình phẳng giới hạn bởi đồ thị với trục hoành có diện tích phần phía trên trục hoành bằng diện tích phần phía dưới trục hoành. Khi đó $m=\dfrac{a}{b}$ với $\dfrac{a}{b}$ là phân số tối giản. Tính $a+2b$.
$37$ | |
$38$ | |
$0$ | |
$29$ |
Cho hàm số $f(x)=x^4-5x^2+4$. Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành. Mệnh đề nào sau đây là sai?
$S=2\displaystyle\displaystyle\int\limits_{0}^{2}\left|f(x)\right|\mathrm{\,d}x$ | |
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x\right|$ | |
$S=2\left|\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x\right|+2\left|\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x\right|$ | |
$S=\displaystyle\displaystyle\int\limits_{-2}^{2}\left|f(x)\right|\mathrm{\,d}x$ |
Tính diện tích \(S\) của hình phẳng \((H)\) giới hạn bởi đồ thị hàm số \(y=-x^3+3x^2-2\), hai trục tọa độ và đường thẳng \(x=2\).
\(S=\dfrac{1}{3}\) | |
\(S=\dfrac{19}{2}\) | |
\(S=\dfrac{9}{2}\) | |
\(S=\dfrac{5}{2}\) |
Tiếp tuyến của đường cong \(\left(\mathscr{C}\right)\colon y=\dfrac{2x+1}{x-1}\) tại điểm \(M(2;5)\) cắt các trục tọa độ \(Ox\), \(Oy\) lần lượt tại \(A\) và \(B\). Tính diện tích tam giác \(OAB\).
\(\dfrac{121}{6}\) | |
\(\dfrac{121}{3}\) | |
\(-\dfrac{121}{6}\) | |
\(-\dfrac{121}{3}\) |
Tính diện tích hình phẳng tạo thành bởi parabol \(y=x^2\), đường thẳng \(y=-x+2\) và trục hoành trên đoạn \([0;2]\) (phần gạch sọc trong hình vẽ).
\(\dfrac{5}{6}\) | |
\(\dfrac{7}{6}\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{5}\) |
Nếu hàm số \(y=f(x)\) liên tục trên đoạn \([a;b]\) thì diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\), trục hoành và hai đường thẳng \(x=a\), \(x=b\) là
\(\displaystyle\int\limits_{a}^{b}\left|f(x)-g(x)\right|\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{b}^{a}\left|f(x)\right|\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{a}^{b}\left|f(x)\right|\mathrm{\,d}x\) |
Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y=3^x\), trục \(Ox\) và hai đường thẳng \(x=-1\), \(x=2\).
\(S=\dfrac{26}{3}\) | |
\(S=12\) | |
\(S=\dfrac{12}{\ln3}\) | |
\(S=\dfrac{26}{3\ln3}\) |
Cho đồ thị hàm số \(y=h(x)\). Diện tích hình phẳng (phần gạch chéo trong hình vẽ) bằng
\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{-1}^{1}h(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x\) | |
\(-\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) |