Một hộp có \(5\) viên bi xanh, \(6\) viên bi đỏ và \(7\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi trong hộp. Tính xác suất để \(5\) viên bi được chọn có đủ \(3\) màu và số bi đỏ bằng với số bi vàng.
Một bộ đề có \(10\) câu hỏi trắc nghiệm, trong đó có \(6\) câu Đại số và \(4\) câu Hình học. Bạn Nam bốc thăm chọn ngẫu nhiên \(3\) câu từ bộ đề. Hỏi xác suất để trong số ba câu bạn Nam chọn được có ít nhất một câu Hình học.
Có hai thùng đựng rượu Bầu Đá, một loại rượu nổi tiếng của thị xã An Nhơn, tỉnh Bình Định. Thùng thứ nhất đựng \(10\) chai gồm \(6\) chai rượu loại một và \(4\) chai rượu loại hai. Thùng thứ hai đựng \(8\) chai gồm \(5\) chai rượu loại một và \(3\) chai rượu loại hai. Lấy ngẫu nhiên mỗi thùng một chai, tính xác suất để lấy được ít nhất một chai rượu loại một. Biết rằng các chai rượu giống nhau về hình thức (rượu loại một và loại hai chỉ khác nhau về nồng độ cồn) và khả năng được chọn là như nhau.
Lớp 11B có \(20\) học sinh gồm \(12\) nữ và \(8\) nam. Cần chọn ra \(2\) học sinh của lớp đi lao động. Tính xác suất để chọn ngẫu nhiên được \(2\) học sinh trong đó có cả nam và nữ.
Có \(6\) chiếc ghế được kê thành một hàng ngang, xếp ngẫu nhiên \(6\) học sinh, gồm \(3\) học sinh lớp A, \(2\) học sinh lớp B và \(1\) học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng \(1\) học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng
\(\dfrac{1}{6}\) | |
\(\dfrac{3}{20}\) | |
\(\dfrac{2}{15}\) | |
\(\dfrac{1}{5}\) |
Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tổng các chữ số là chẵn bằng
\(\dfrac{41}{81}\) | |
\(\dfrac{4}{9}\) | |
\(\dfrac{1}{2}\) | |
\(\dfrac{16}{81}\) |
Một tổ có \(6\) học sinh nam và \(4\) học sinh nữ. Chọn ngẫu nhiên \(4\) học sinh. Xác suất để trong \(4\) học sinh được chọn luôn có học sinh nữ là
\(\dfrac{1}{14}\) | |
\(\dfrac{1}{210}\) | |
\(\dfrac{13}{14}\) | |
\(\dfrac{209}{210}\) |
Trong một tổ có \(3\) học sinh nữ và \(7\) học sinh nam. Giáo viên chủ nhiệm chọn ngẫu nhiên \(3\) học sinh để lập nhóm tham gia trò chơi dân gian. Xác suất để \(3\) học sinh được chọn có cả nam và nữ là
\(\dfrac{7}{20}\) | |
\(\dfrac{7}{60}\) | |
\(\dfrac{7}{10}\) | |
\(\dfrac{7}{30}\) |
Một hộp có \(5\) viên bi xanh, \(6\) viên bi đỏ và \(7\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi trong hộp. Tính xác suất để \(5\) viên bi được chọn có đủ \(3\) màu và số bi đỏ bằng với số bi vàng.
\(\dfrac{95}{408}\) | |
\(\dfrac{313}{408}\) | |
\(\dfrac{5}{102}\) | |
\(\dfrac{13}{408}\) |
Một hộp chứa \(13\) quả bóng, gồm \(6\) quả bóng màu xanh và \(7\) quả bóng màu đỏ. Chọn ngẫu nhiên đồng thời \(2\) quả từ hộp đó. Xác suất để \(2\) quả chọn ra cùng màu là
\(\dfrac{8}{13}\) | |
\(\dfrac{6}{13}\) | |
\(\dfrac{5}{13}\) | |
\(\dfrac{7}{13}\) |
Một hộp chứa \(5\) bi đen và \(4\) bi trắng. Chọn ngẫu nhiên \(2\) viên bi từ hộp đó. Tính xác suất để chọn được \(2\) viên bi cùng màu.
\(\dfrac{1}{4}\) | |
\(\dfrac{1}{9}\) | |
\(\dfrac{4}{9}\) | |
\(\dfrac{5}{9}\) |
Một hộp chứa \(18\) quả cầu gồm \(8\) quả cầu màu xanh và \(10\) quả cầu màu trắng. Chọn ngẫu nhiên \(2\) quả cầu từ hộp đó. Tính xác suất để chọn được \(2\) quả cầu cùng màu.
\(\dfrac{12}{17}\) | |
\(\dfrac{5}{17}\) | |
\(\dfrac{73}{153}\) | |
\(\dfrac{80}{153}\) |
Một bộ đề có \(10\) câu hỏi trắc nghiệm, trong đó có \(6\) câu Đại số và \(4\) câu Hình học. Bạn Nam bốc thăm chọn ngẫu nhiên \(3\) câu từ bộ đề. Hỏi xác suất để trong số ba câu bạn Nam chọn được có ít nhất một câu Hình học.
\(\dfrac{1}{6}\) | |
\(\dfrac{1}{30}\) | |
\(\dfrac{29}{30}\) | |
\(\dfrac{5}{6}\) |
Một hộp chứa \(12\) quả cầu gồm \(7\) quả cầu màu xanh và \(5\) quả cầu màu đỏ. Chọn ngẫu nhiên đồng thời \(3\) quả cầu từ hộp đó. Xác suất để \(3\) quả cầu chọn ra có cùng màu là
\(\dfrac{7}{44}\) | |
\(\dfrac{35}{22}\) | |
\(\dfrac{9}{44}\) | |
\(\dfrac{1}{22}\) |
Một lớp học có \(40\) học sinh gồm \(25\) nam và \(15\) nữ. Chọn \(3\) học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn \(3\) học sinh trong đó có ít nhất \(1\) học sinh nam?
\(2625\) | |
\(4500\) | |
\(2300\) | |
\(9425\) |
Một hộp chứa $15$ quả cầu gồm $6$ quả màu đỏ được đánh số từ $1$ đến $6$ và $9$ quả màu xanh được đánh số từ $1$ đến $9$. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
$\dfrac{9}{35}$ | |
$\dfrac{18}{35}$ | |
$\dfrac{4}{35}$ | |
$\dfrac{1}{7}$ |
Từ một hộp chứa $16$ quả cầu gồm $7$ quả màu đỏ và $9$ quả màu xanh, lấy ngẫu nhiên đồng thời hai quả. Xác suất để lấy được hai quả có màu khác nhau bằng
$\dfrac{7}{40}$ | |
$\dfrac{21}{40}$ | |
$\dfrac{3}{10}$ | |
$\dfrac{2}{15}$ |
Chọn ngẫu nhiên một số trong $15$ số nguyên dương đầu tiên. Xác suất để chọn được số chẵn bằng
$\dfrac{7}{8}$ | |
$\dfrac{8}{15}$ | |
$\dfrac{7}{15}$ | |
$\dfrac{1}{2}$ |
Cho \(A=\{0;1;2;3;4;5;6;7\}\) và \(E=\left\{\overline{a_1a_2a_3a_4}\,|\,a_1,a_2,a_3,a_4\in A,\,a_1\neq0\right\}\). Lấy ngẫu nhiên một phần tử thuộc \(E\). Tính xác suất để phần tử đó là số chia hết cho \(5\).
Một hộp chứa \(18\) quả cầu gồm \(8\) quả cầu màu xanh và \(10\) quả cầu màu trắng. Chọn ngẫu nhiên \(2\) quả cầu từ hộp đó. Tính xác suất để chọn được \(2\) quả cầu cùng màu.