Gọi $M$ và $m$ lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y=2\cos2x+3$. Tính tổng $M+m$.
$8$ | |
$6$ | |
$7$ | |
$3$ |
Tìm giá trị nhỏ nhất của hàm số $y=2\cos\left(3x-\dfrac{\pi}{5}\right)+3$.
$-5$ | |
$1$ | |
$3$ | |
$-1$ |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=\cos2x-2\) lần lượt là
\(-3\) và \(-1\) | |
\(3\) và \(-2\) | |
\(2\) và \(-2\) | |
\(3\) và \(-1\) |
Tìm giá trị nhỏ nhất \(m\) của hàm số $$y=\dfrac{1}{\cos x+1}.$$
\(m=\dfrac{1}{2}\) | |
\(m=\dfrac{1}{\sqrt{2}}\) | |
\(m=1\) | |
\(m=\sqrt{2}\) |
Hàm số \(y=5+4\sin2x\cos2x\) có tất cả bao nhiêu giá trị nguyên?
\(3\) | |
\(4\) | |
\(5\) | |
\(6\) |
Tìm giá trị lớn nhất \(M\) và giá trị nhỏ nhất \(m\) của hàm số \(y=1-2\left|\cos3x\right|\).
\(M=3,\,m=-1\) | |
\(M=1,\,m=-1\) | |
\(M=2,\,m=-2\) | |
\(M=0,\,m=-2\) |
Tìm tập giá trị \(T\) của hàm số \(y=3\cos2x+5\).
\(T=[-1;1]\) | |
\(T=[-1;11]\) | |
\(T=[2;8]\) | |
\(T=[5;8]\) |
Cho hàm số $f(x)=1-\dfrac{1}{\cos^22x}$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\tan2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\cot2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\dfrac{1}{2}\tan2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\tan2x+C$ |
Cho $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cos x+C$. Khẳng định nào dưới đây đúng?
$f(x)=-\sin x$ | |
$f(x)=-\cos x$ | |
$f(x)=\sin x$ | |
$f(x)=\cos x$ |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
$5$ | |
$2$ | |
$3$ | |
$\dfrac{5}{2}$ |
Tập xác định của hàm số $y=\cos x$ là tập hợp nào trong các tập hợp dưới đây?
$\mathbb{R}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{k\pi,\,\,k\in\mathbb{Z}\right\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k\pi,\,\,k\in\mathbb{Z}\right\}$ |
Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là
$M=8;\,m=5$ | |
$M=5;\,m=2$ | |
$M=8;\,m=4$ | |
$M=8;\,m=2$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\{k2\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Điều kiện xác định của hàm số $y=\dfrac{2}{\cos x-1}$ là
$\cos x\neq-1$ | |
$\cos x\neq1$ | |
$\cos x\neq2$ | |
$\cos x\neq0$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
$5$ | |
$4$ | |
$6$ | |
$7$ |
Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?
$f(x)=\dfrac{1}{2}x^2-\cos x$ | |
$f(x)=1-\sin x$ | |
$f(x)=1+\sin x$ | |
$f(x)=\dfrac{1}{2}x^2+\sin x$ |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
$-77$ | |
$-17$ | |
$103$ | |
$43$ |