Phương trình $\sin x=\sin\alpha$ có nghiệm là
![]() | $\left[\begin{array}{l}x=\alpha+k\pi\\ x=\pi-\alpha+k\pi\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x=\alpha+k2\pi\\ x=-\alpha+k2\pi\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x=\alpha+k\pi\\ x=-\alpha+k\pi\end{array}\right.$ |
![]() | $\left[\begin{array}{l}x=\alpha+k2\pi\\ x=\pi-\alpha+k2\pi\end{array}\right.$ |
Tìm nghiệm của phương trình $\cos x=1$.
![]() | $x=\dfrac{\pi}{2}+k\pi\,(k\in\mathbb{Z})$ |
![]() | $x=k2\pi\,(k\in\mathbb{Z})$ |
![]() | $x=k\pi\,(k\in\mathbb{Z})$ |
![]() | $x=\pi+k\pi\,(k\in\mathbb{Z})$ |
Tìm tất cả các nghiệm của phương trình $\tan^2x+\left(\sqrt{3}-1\right)\tan x-\sqrt{3}=0$.
![]() | $x=\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{6}+k\pi,\,(k\in\mathbb{Z})$ |
![]() | $x=-\dfrac{\pi}{4}+k\pi;\,x=\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
![]() | $x=\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
![]() | $x=-\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
Điều kiện có nghiệm của phương trình $a\sin x+b\cos x=c$ là
![]() | $a^2+b^2>c^2$ |
![]() | $a^2+b^2\geq c^2$ |
![]() | $a^2+b^2\leq c^2$ |
![]() | $a^2+b^2< c^2$ |
Tìm công thức nghiệm của phương trình $\sin x=\sin\beta^{\circ}$ trong các công thức nghiệm sau đây:
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 180^{\circ}\\ x=-\beta^{\circ}+k 180^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
![]() | $\left[\begin{array}{l}x=\beta^{\circ}+k 360^{\circ}\\ x=180^{\circ}-\beta^{\circ}+k 360^{\circ}\end{array}\right.\;(k\in\mathbb{Z})$ |
Phương trình $\sin x=0$ có nghiệm là
![]() | $x=k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{4}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{-\pi}{2}+k 2\pi,\,k\in\mathbb{Z}$ |
Nghiệm của phương trình $3\tan x-\sqrt{3}=0$ là
![]() | $x=\dfrac{\pi}{6}+k\dfrac{\pi}{3},\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k\dfrac{2\pi}{3},\,k\in\mathbb{Z}$ |
Nghiệm của phương trình $3\cot x+\tan x-2\sqrt{3}=0$ là
![]() | $x=\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{6}+k\pi,\,k\in\mathbb{Z}$ |
![]() | $x=\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}$ |
Cho phương trình $a\sin x+b\cos x=c$ (với $a$, $b$, $c$ là các tham số). Tìm điều kiện cần và đủ của $a$, $b$, $c$ để phương trình có nghiệm.
![]() | $a^2+b^2\ge c^2$ |
![]() | $a^2+b^2\le c^2$ |
![]() | $a+b\ge c$ |
![]() | $a+b\le c$ |
Tìm tất cả các nghiệm của phương trình $\tan^2x+\left(\sqrt{3}-1\right)\tan x-\sqrt{3}=0$.
![]() | $x=\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{6}+k\pi,\,(k\in\mathbb{Z})$ |
![]() | $x=-\dfrac{\pi}{4}+k\pi;\,x=\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
![]() | $x=\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
![]() | $x=-\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
Phương trình nào sau đây vô nghiệm?
![]() | \(\tan x-2018=0\) |
![]() | \(2\sin x-3=0\) |
![]() | \(2\sin x-1=0\) |
![]() | \(4cosx-3=0\) |
Phương trình \(\tan(3x-15^\circ)=\sqrt{3}\) có các nghiệm là
![]() | \(x=75^\circ+k180^\circ\) |
![]() | \(x=75^\circ+k60^\circ\) |
![]() | \(x=60^\circ+k180^\circ\) |
![]() | \(x=25^\circ+k60^\circ\) |
Nghiệm đặc biệt nào sau đây là sai?
![]() | \(\sin x=0\Leftrightarrow x=k\pi\) |
![]() | \(\sin x=-1\Leftrightarrow x=-\dfrac{\pi}{2}+k2\pi\) |
![]() | \(\sin x=0\Leftrightarrow x=k\dfrac{\pi}{2}\) |
![]() | \(\sin x=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\) |
Phương trình \(\tan^2x-2\sqrt{3}\tan x+3=0\) có bao nhiêu nghiệm trên đoạn \(\left[-10\pi;10\pi\right]\)?
![]() | \(9\) |
![]() | \(10\) |
![]() | \(19\) |
![]() | \(20\) |
Trong các phương trình sau phương trình nào là phương trình bậc nhất đối với hàm số \(y=\sin x\)?
![]() | \(2\cos x-1=0\) |
![]() | \(3\sin x+4=0\) |
![]() | \(\sqrt{3}\tan x-1=0\) |
![]() | \(2\sin3x+1=0\) |
Phương trình \(\cos x=1\) có họ nghiệm là
![]() | \(x=\dfrac{\pi}{2}+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\dfrac{\pi}{2}+k\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=k\pi\,\left(k\in\mathbb{Z}\right)\) |
Cho phương trình \(\sin x=a\). Biết rằng \(\sin\alpha=a\) và \(k\in\mathbb{Z}\). Khẳng định nào sau đây đúng?
![]() | \(x=\pm\alpha+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(\left[\begin{array}{l}x=\alpha+k2\pi\\ x=\pi-\alpha+k2\pi\end{array}\right.\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\alpha+k\pi\,\left(k\in\mathbb{Z}\right)\) |
![]() | \(x=\alpha+k2\pi\,\left(k\in\mathbb{Z}\right)\) |
Tìm nghiệm dương nhỏ nhất của phương trình $$3\sin3x-\sqrt{3}\cos9x=1+4\sin^33x$$
![]() | \(x=\dfrac{\pi}{2}\) |
![]() | \(x=\dfrac{\pi}{18}\) |
![]() | \(x=\dfrac{\pi}{24}\) |
![]() | \(x=\dfrac{7\pi}{54}\) |
Phương trình \(\sin{x}+\sqrt{3}\cos{x}=2\) tương đương với phương trình nào sau đây?
![]() | \(\sin\left(x+\dfrac{\pi}{3}\right)=1\) |
![]() | \(\sin\left(x-\dfrac{\pi}{3}\right)=1\) |
![]() | \(\cos\left(x+\dfrac{\pi}{3}\right)=1\) |
![]() | \(\cos\left(x-\dfrac{\pi}{3}\right)=1\) |
Phương trình \(\sqrt{3}\sin3x+\cos3x=-1\) tương đương với phương trình nào sau đây?
![]() | \(\sin\left(3x+\dfrac{\pi}{6}\right)=-\dfrac{1}{2}\) |
![]() | \(\sin\left(3x+\dfrac{\pi}{6}\right)=-\dfrac{\pi}{6}\) |
![]() | \(\sin\left(3x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\) |
![]() | \(\sin\left(3x+\dfrac{\pi}{6}\right)=\dfrac{1}{2}\) |