Ngân hàng bài tập

Bài tập tương tự

B

Tìm mệnh đề sai trong các mệnh đề sau đây:

Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thứ ba thì chúng song song với nhau
Nếu hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau
Nếu hai mặt phẳng có một điểm chung thì còn có vô số điểm chung khác nữa
Nếu một đường thẳng cắt một trong hai mặt phẳng song song với nhau thì sẽ cắt mặt phẳng còn lại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai đường thẳng $a$ và $b$ cùng song song với $(P)$. Khẳng định nào sau đây là đúng?

$a$ và $b$ chéo nhau
Chưa đủ điều kiện để kết luận vị trí tương đối của $a$ và $b$
$a\parallel b$
$a$ và $b$ cắt nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(-4;-3;3)$ và mặt phẳng $(P)\colon x+y+z=0$. Đường thẳng đi qua $A$, cắt trục $Oz$ và song song với $(P)$ có phương trình là

$\dfrac{x-4}{4}=\dfrac{y-3}{3}=\dfrac{z-3}{-7}$
$\dfrac{x+4}{4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$
$\dfrac{x+4}{-4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$
$\dfrac{x+8}{4}=\dfrac{y+6}{3}=\dfrac{z-10}{-7}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho hai đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y}{1}=\dfrac{z}{-2}$, $d'\colon\begin{cases} x=-1-2t\\ y=t\\ z=-1-t \end{cases}$ và mặt phẳng $(P)\colon x-y-z=0$. Biết rằng đường thẳng $\Delta$ song song với mặt phẳng $(P)$, cắt các đường thẳng $d,\,d'$ lần lượt tại $M$ và $N$ sao cho $MN=\sqrt{2}$ (điểm $M$ không trùng với gốc tọa độ $O$). Phương trình của đường thẳng $\Delta$ là

$\begin{cases}x=\dfrac{4}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$
$\begin{cases}x=-\dfrac{4}{7}+3t\\ y=\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$
$\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{3}{7}-5t\end{cases}$
$\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho \(A(2;-3;0)\) và mặt phẳng \((\alpha)\colon x+2y-z+3=0\). Tìm phương trình mặt phẳng \((P)\) đi qua \(A\) sao cho \((P)\) vuông góc với \((\alpha)\) và \((P)\) song song với trục \(Oz\)?

\(2x+y-1=0\)
\(y+2z+3=0\)
\(2x-y-7=0\)
\(x+2y-z+4=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\begin{cases}x=1\\ y=1+t\\ z=-1+t\end{cases}\) và hai mặt phẳng \((P)\colon x-y+z+1=0\), \((Q)\colon2x+y-z-4=0\). Khẳng định nào sau đây đúng?

\(d\parallel(P)\)
\(d\parallel(Q)\)
\((P)\cap(Q)=d\)
\(d\bot(P)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho điểm \(M(1;-3;4)\), đường thẳng \(d\colon\dfrac{x+3}{3}=\dfrac{y-5}{-5}=\dfrac{z-2}{-1}\) và mặt phẳng \((P)\colon2x+z-2=0\). Viết phương trình đường thẳng \(\Delta\) đi qua \(M\), vuông góc với \(d\) và song song với \((P)\).

\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\)
\(\Delta\colon\dfrac{x-1}{-1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\)
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{1}=\dfrac{z-4}{-2}\)
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo

$45^\circ$
$90^\circ$
$30^\circ$
$60^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo

$60^\circ$
$90^\circ$
$30^\circ$
$45^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?

$SI$
$SA$
$SB$
$SC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?

$AB\perp BC$
$SA\perp AC$
$SA\perp(ABC)$
$\big(SA,(ABC)\big)=90^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc

$\widehat{SCA}$
$\widehat{SCB}$
$\widehat{SAC}$
$\widehat{ASC}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc

$\widehat{SBA}$
$\widehat{SBC}$
$\widehat{SAB}$
$\widehat{ASB}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng

$AC$
$BC$
$AB$
$SC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng

$AB$
$BC$
$SB$
$AC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là

$90^\circ$
$0^\circ$
$180^\circ$
$90$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?

$SB\perp BC$
$SA\perp AB$
$SA\perp AC$
$SA\perp BC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì

$a\perp(\alpha)$
$a\parallel(\alpha)$
$a\subset(\alpha)$
$a,\,b,\,c$ đồng quy
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?

$a\perp b$
$a\parallel b$
$a,\,b$ chéo nhau
$a,\,b$ cắt nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai đường thẳng chéo nhau $a$ và $b$. Lấy $A,\,B$ thuộc $a$ và $C,\,D$ thuộc $b$. Khẳng định nào sau đây đúng khi nói về hai đường thẳng $AD$ và $BC$?

Cắt nhau
Có thể song song hoặc cắt nhau
Chéo nhau
Song song nhau
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự