Ngân hàng bài tập

Bài tập tương tự

B

Cho hình chóp $S.ABC$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $SA,\,SB,\,SC$. Chọn khẳng định đúng.

$(MNP)\parallel(ABC)$
$(MNP)\parallel(SAC)$
$(SMN)\parallel(ABC)$
$(MNP)\parallel(SBC)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$ là đường thẳng

Đi qua điểm $S$ và song song với $AD$
Đi qua điểm $S$ và song song với $AB$
Không tồn tại
Đi qua giao điểm $I$ của $AB$ và $CD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Phát biểu nào không đúng về giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$?

Song song với $CD$
Đi qua điểm $S$
Song song với $AB$
Đi qua giao điểm $I$ của $AB$ và $CD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là

$SD$
$SO$ ($O$ là tâm của hình bình hành $ABCD$)
$SG$ ($G$ là trung điểm cạnh $AB$)
$SF$ ($F$ là trung điểm cạnh $CD$)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $I$ là trung điểm $SA$. Thiết diện của hình chóp $S.ABCD$ cắt bởi $(IBC)$ là

Tam giác $IBC$
Hình thang $IGBC$ ($G$ là trung điểm $SB$)
Hình thang $IJCB$ ($J$ là trung điểm $SD$)
Tứ giác $IBCD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M$, $N$, $P$ lần lượt là trung điểm các cạnh $BC$, $CD$, $SA$. Tìm giao tuyến của các cặp mặt phẳng sau:

  1. $(SAC)$ và $(SBD)$.
  2. $(MNP)$ và $(SAB)$.
  3. $(MNP)$ và $(SAD)$.
  4. $(MNP)$ và $(SBC)$.
  5. $(MNP)$ và $(SCD)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB=2a\), \(AD=DC=CB=a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=3a\) (như hình minh họa trên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng

\(\dfrac{3a}{4}\)
\(\dfrac{3a}{2}\)
\(\dfrac{3\sqrt{13}a}{13}\)
\(\dfrac{6\sqrt{13}a}{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?

$SI$
$SA$
$SB$
$SC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng

$\dfrac{\sqrt{3}}{3}a$
$\sqrt{2}a$
$\dfrac{2\sqrt{3}}{3}a$
$\dfrac{\sqrt{2}}{2}a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.

  1. Chứng minh rằng $BD\perp(SAC)$.
  2. Tính góc tạo bởi $SC$ và $(SAD)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.

Khẳng định nào sau đây là đúng?

$BC\perp(SAB)$
$BC\perp(SBD)$
$BC\perp(SCD)$
$BC\perp(SAC)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, $SA$ vuông góc mặt đáy. Hình chiếu vuông góc của $SB$ lên $(ABCD)$ là

$CB$
$DB$
$AB$
$SA$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tứ diện $ABCD$. Gọi $N,\,K$ lần lượt là trung điểm các cạnh $BC$ và $CD$, $M$ là điểm trên cạnh $AB$ sao cho $MB=2MA$. Thiết diện của tứ diện $ABCD$ cắt bởi mặt phẳng $(MNK)$ là

Hình bình hành
Hình thang
Hình chữ nhật
Hình thoi
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tứ diện $ABCD$. Gọi $M,\,N,\,K$ lần lượt là trung điểm các cạnh $AB$, $BC$, $CD$. Thiết diện của tứ diện $ABCD$ cắt bởi mặt phẳng $(MNK)$ là

Hình bình hành
Hình thang
Hình chữ nhật
Hình thoi
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$

Không tồn tại
Đi qua điểm $S$
Đi qua giao điểm $I$ của $AD$ và $BC$
Đi qua giao điểm $I$ của $AB$ và $CD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai đường thẳng $a$ và $b$ chéo nhau. Có bao nhiêu mặt phẳng chứa $a$ và song song với $b$?

$0$
$1$
$2$
Vô số
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho $4$ điểm không đồng phẳng $A,\,B,\,C,\,D$. Gọi $I,\,K$ lần lượt là trung điểm của $AD$ và $BC$. Giao tuyến của $(IBC)$ và $(KAD)$ là

$IK$
$BC$
$AK$
$DK$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy là hình thang $ABCD$ ($AB\parallel CD$). Khẳng định nào sau đây sai?

$S.ABCD$ có $4$ mặt bên
Giao tuyến của $(SAC)$ và $(SBD)$ là $SO$, với $O=AC\cap BD$
Giao tuyến của $(SAD)$ và $(SBC)$ là $SI$, với $I=AD\cap BC$
Giao tuyến của $(SAB)$ và $(SAD)$ là $BD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong mặt phẳng $(\alpha)$, cho bốn điểm $A,\,B,\,C,\,D$ trong đó không có ba điểm nào thẳng hàng. Điểm $S$ không thuộc mặt phẳng $(\alpha)$. Có bao nhiêu mặt phẳng tạo bởi $S$ và $2$ trong $4$ điểm nói trên?

$4$
$5$
$6$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự