Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.
![]() | $V=\dfrac{1}{12}$ |
![]() | $V=\dfrac{1}{3}$ |
![]() | $V=\dfrac{1}{6}$ |
![]() | $V=\dfrac{2}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $N,\,P$ lần lượt là trung điểm của các cạnh $BC,\,AD$; $K$ là giao $BP$ và $AN$. Khi đó $SK$ là giao tuyến của mặt phẳng $(SAN)$ và mặt phẳng nào sau đây?
![]() | $(SPC)$ |
![]() | $(SCD)$ |
![]() | $(SBC)$ |
![]() | $(SBP)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là
![]() | $SD$ |
![]() | $SO$ ($O$ là tâm của hình bình hành $ABCD$) |
![]() | $SG$ ($G$ là trung điểm cạnh $AB$) |
![]() | $SF$ ($F$ là trung điểm cạnh $CD$) |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M$, $N$, $P$ lần lượt là trung điểm các cạnh $BC$, $CD$, $SA$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
![]() | $V=\dfrac{7\sqrt{6}a^3}{72}$ |
![]() | $V=\dfrac{7\sqrt{6}a^3}{36}$ |
![]() | $V=\dfrac{5\sqrt{6}a^3}{36}$ |
![]() | $V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
![]() | $\dfrac{V'}{V}=\dfrac{1}{6}$ |
![]() | $\dfrac{V'}{V}=\dfrac{2}{5}$ |
![]() | $\dfrac{V'}{V}=\dfrac{1}{3}$ |
![]() | $\dfrac{V'}{V}=\dfrac{1}{4}$ |
Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $SA=SB=SC=AC=a$, $SB$ tạo với mặt phẳng $(SAC)$ một góc $30^\circ$. Thể tích khối chóp đã cho bằng
![]() | $\dfrac{a^3}{4}$ |
![]() | $\dfrac{a^3}{8}$ |
![]() | $\dfrac{\sqrt{3}a^3}{12}$ |
![]() | $\dfrac{\sqrt{3}a^3}{24}$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
![]() | $\dfrac{V'}{V}=\dfrac{1}{6}$ |
![]() | $\dfrac{V'}{V}=\dfrac{2}{5}$ |
![]() | $\dfrac{V'}{V}=\dfrac{1}{3}$ |
![]() | $\dfrac{V'}{V}=\dfrac{1}{4}$ |
Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó thiết diện của mặt phẳng $(MNP)$ với hình chóp $S.ABCD$ là
![]() | Tam giác $MNP$ |
![]() | Tứ giác $BM_2N_2N$ |
![]() | Ngũ giác $NMM_2P_1N_2$ |
![]() | Tam giác $P_1M_1N_1$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $d$ là giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$. Khẳng định nào sau đây đúng?
![]() | $d$ qua $S$ và song song với $BC$ |
![]() | $d$ qua $S$ và song song với $DC$ |
![]() | $d$ qua $S$ và song song với $AB$ |
![]() | $d$ qua $S$ và song song với $BD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $I$ là trung điểm $SA$. Thiết diện của hình chóp $S.ABCD$ cắt bởi $(IBC)$ là
![]() | Tam giác $IBC$ |
![]() | Hình thang $IGBC$ ($G$ là trung điểm $SB$) |
![]() | Hình thang $IJCB$ ($J$ là trung điểm $SD$) |
![]() | Tứ giác $IBCD$ |
Cho hình chóp $S.ABCD$ có chiều cao bằng $8$ và đáy $ABCD$ là hình vuông cạnh bằng $3$. Gọi $M$ là trung điểm của $SB$ và $N$ là điểm thuộc $SD$ sao cho $\overrightarrow{SN}=2\overrightarrow{ND}$. Thể tích khối tứ diện $ACMN$ bằng
![]() | $6$ |
![]() | $9$ |
![]() | $4$ |
![]() | $3$ |
Cho khối chóp $S.ABCD$ có đáy là hình bình hành và có thể tích $48$. Trên các cạnh $SA,\,SB,\,SC,\,SD$ lần lượt lấy các điểm $A',\,B',\,C'$ và $D'$ sao cho $\dfrac{SA'}{SA}=\dfrac{SC'}{SC}=\dfrac{1}{3}$ và $\dfrac{SB'}{SB}=\dfrac{SD'}{SD}=\dfrac{3}{4}$. Tính thể tích $V$ của khối đa diện lõm $S.A'B'C'D'$.
![]() | $V=4$ |
![]() | $V=9$ |
![]() | $V=\dfrac{3}{2}$ |
![]() | $V=6$ |
Cho hình chóp $S.ABCD$ với đáy là hình bình hành tâm $O$. Gọi $G$ là trọng tâm của tam giác $SAB$. Hãy tìm
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $O$. Lấy điểm $M$ trên cạnh $SA$, trung điểm $CD$ là $N$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
![]() | $\dfrac{5\sqrt{2}}{2}$ |
![]() | $\dfrac{5}{2}$ |
![]() | $\dfrac{2\sqrt{5}}{3}$ |
![]() | $\dfrac{5}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
![]() | $\dfrac{a\sqrt{3}}{4}$ |
![]() | $\dfrac{a\sqrt{3}}{2}$ |
![]() | $a\sqrt{3}$ |
![]() | $\dfrac{a\sqrt{3}}{3}$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
![]() | $\dfrac{a^3\sqrt{7}}{18}$ |
![]() | $\dfrac{a^3\sqrt{7}}{6}$ |
![]() | $\dfrac{a^3\sqrt{7}}{3}$ |
![]() | $\dfrac{a^3\sqrt{7}}{12}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
![]() | $\dfrac{\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{\sqrt{3}}{2}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{2}a^3$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
![]() | $SI$ |
![]() | $SA$ |
![]() | $SB$ |
![]() | $SC$ |