Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(-3;4;0)\), \(\vec{b}=(5;0;12)\). Tính cosin góc giữa \(\vec{a}\) và \(\vec{b}\).
\(\dfrac{3}{13}\) | |
\(-\dfrac{3}{13}\) | |
\(-\dfrac{5}{6}\) | |
\(\dfrac{5}{6}\) |
Trong không gian $Oxyz$, gọi $\varphi$ là góc tạo bởi hai vectơ $\overrightarrow{a}=(3;-1;2)$ và $\overrightarrow{b}=(1;1;-1)$. Mệnh đề nào dưới đây đúng?
$\varphi=30^{\circ}$ | |
$\varphi=45^{\circ}$ | |
$\varphi=90^{\circ}$ | |
$\varphi=60^{\circ}$ |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho ba điểm \(A(-2;1;0)\), \(B(-3;0;4)\), \(C(0;7;3)\). Tính \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)\).
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\sqrt{798}}{57}\) | |
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{14\sqrt{118}}{354}\) | |
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{\sqrt{798}}{57}\) | |
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{7\sqrt{118}}{177}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\) |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
$3$ | |
$6$ | |
$2$ | |
$3\sqrt{3}$ |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
\(150^\circ\) | |
\(90^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
\(\cos A=\dfrac{2}{\sqrt{17}}\) | |
\(\cos A=\dfrac{1}{\sqrt{17}}\) | |
\(\cos A=-\dfrac{2}{\sqrt{17}}\) | |
\(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).
\(\dfrac{\sqrt{2}}{2}\) | |
\(-\dfrac{\sqrt{2}}{2}\) | |
\(-135^\circ\) | |
\(135^\circ\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
\(135^\circ\) | |
\(45^\circ\) | |
\(30^\circ\) | |
\(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;5)\) và \(\vec{b}=(3;-7)\). Tính góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\).
\(60^\circ\) | |
\(45^\circ\) | |
\(135^\circ\) | |
\(120^\circ\) |
Cho \(\vec{u}=\vec{a}+3\vec{b}\) vuông góc với \(\vec{v}=7\vec{a}-5\vec{b}\) và \(\vec{x}=\vec{a}-4\vec{b}\) vuông góc với \(\vec{y}=7\vec{a}-2\vec{b}\). Khi đó góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\) bằng.
\(\left(\vec{a},\vec{b}\right)=75^\circ\) | |
\(\left(\vec{a},\vec{b}\right)=60^\circ\) | |
\(\left(\vec{a},\vec{b}\right)=120^\circ\) | |
\(\left(\vec{a},\vec{b}\right)=45^\circ\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).
\(T=3\) | |
\(T=6\) | |
\(T=0\) | |
\(T=9\) |
Trong không gian \(Oxyz\), cho ba điểm \(A(-1;-2;3)\), \(B(0;3;1)\), \(C(4;2;2)\). Côsin của góc \(\widehat{BAC}\) bằng
\(-\dfrac{9}{\sqrt{35}}\) | |
\(-\dfrac{9}{2\sqrt{35}}\) | |
\(\dfrac{9}{\sqrt{35}}\) | |
\(\dfrac{9}{2\sqrt{35}}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) | |
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) | |
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) | |
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\) đều khác vectơ-không. Gọi \(\alpha\) là góc giữa hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Câu nào sai trong các câu sau:
\(\overrightarrow{a}\bot\overrightarrow{b}\Leftrightarrow a_1b_1+a_2b_2+a_3b_3=0\) | |
\(\cos\alpha=\dfrac{a_1b_1+a_2b_2+a_3b_3}{\left(a_1^2+a_2^2+a_3^2\right)\cdot\left(b_1^2+b_2^2+b_3^2\right)}\) | |
\(\cos\alpha=\dfrac{\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|}\) | |
\(\cos\alpha=\dfrac{a_1b_1+a_2b_2+a_3b_3}{\sqrt{a_1^2+a_2^2+a_3^2}\cdot\sqrt{b_1^2+b_2^2+b_3^2}}\) |
Trong không gian với hệ tọa độ \(Oxyz\) cho \(A(-1;2;4)\), \(B(-1;1;4)\), \(C(0;0;4)\). Tìm số đo của \(\widehat{ABC}\).
\(135^\circ\) | |
\(120^\circ\) | |
\(45^\circ\) | |
\(60^\circ\) |
Trong không gian \(Oxyz\) cho điểm \(H(1;2;3)\). Viết phương trình mặt phẳng \((P)\) đi qua điểm \(H\) và cắt các trục tọa độ tại ba điểm phân biệt \(A,\,B,\,C\) sao cho \(H\) là trực tâm của tam giác \(ABC\).
\((P)\colon x+\dfrac{y}{2}+\dfrac{z}{3}=1\) | |
\((P)\colon x+2y+3z-14=0\) | |
\((P)\colon x+y+z-6=0\) | |
\((P)\colon\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1\) |