Cho hai đường thẳng $a$ và $b$ chéo nhau. Có bao nhiêu mặt phẳng chứa $a$ và song song với $b$?
$0$ | |
$1$ | |
$2$ | |
Vô số |
Trong các mệnh đề sau, mệnh đề nào đúng?
Hai đường thẳng phân biệt không cắt nhau thì chéo nhau | |
Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau | |
Hai đường thẳng phân biệt không song song thì chéo nhau | |
Hai đường thẳng phân biệt lần lượt thuộc hai mặt phẳng khác nhau thì chéo nhau |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
$45^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
$60^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$45^\circ$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
$SI$ | |
$SA$ | |
$SB$ | |
$SC$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
$AB\perp BC$ | |
$SA\perp AC$ | |
$SA\perp(ABC)$ | |
$\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
$\widehat{SCA}$ | |
$\widehat{SCB}$ | |
$\widehat{SAC}$ | |
$\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
$\widehat{SBA}$ | |
$\widehat{SBC}$ | |
$\widehat{SAB}$ | |
$\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng
$AC$ | |
$BC$ | |
$AB$ | |
$SC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
$AB$ | |
$BC$ | |
$SB$ | |
$AC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
$90^\circ$ | |
$0^\circ$ | |
$180^\circ$ | |
$90$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?
$SB\perp BC$ | |
$SA\perp AB$ | |
$SA\perp AC$ | |
$SA\perp BC$ |
Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì
$a\perp(\alpha)$ | |
$a\parallel(\alpha)$ | |
$a\subset(\alpha)$ | |
$a,\,b,\,c$ đồng quy |
Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?
$a\perp b$ | |
$a\parallel b$ | |
$a,\,b$ chéo nhau | |
$a,\,b$ cắt nhau |
Trong không gian, cho hai đường thẳng $d$ và $d'$ có vectơ chỉ phương lần lượt là $\overrightarrow{u}$ và $\overrightarrow{v}$. Biết rằng $\cos\big(\overrightarrow{u},\overrightarrow{v}\big)=-\dfrac{1}{2}$, góc giữa hai đường thẳng $d$ và $d$ bằng bao nhiêu độ?
$60^{\circ}$ | |
$30^{\circ}$ | |
$120^{\circ}$ | |
$150^{\circ}$ |
Cho tam giác $ABC$, lấy điểm $I$ trên cạnh $AC$ kéo dài (hình bên).
Mệnh đề nào sau đây là mệnh đề sai?
$(ABC)\equiv(BIC)$ | |
$A\in(ABC)$ | |
$BI\in(ABC)$ | |
$I\in(ABC)$ |
Trong các mệnh đề sau, mệnh đề nào sai?
Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau | |
Ba điểm không thẳng hàng cùng thuộc một mặt phẳng duy nhất | |
Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy | |
Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau cho trước |
Trong các mệnh đề sau mệnh đề nào sai?
Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng | |
Dùng nét đứt để biểu diễn cho đường bị che khuất | |
Hình biểu diễn của đường thẳng là đường thẳng | |
Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau |
Cho tứ diện \(ABCD\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(AD\) và \(BC\); \(G\) là trọng tâm tam giác \(BCD\).
Khi ấy giao điểm của đường thẳng \(MG\) và mặt phẳng \((ABC)\) là
Điểm \(C\) | |
Điểm \(N\) | |
Giao điểm của đường thẳng \(MG\) và đường thẳng \(BC\) | |
Giao điểm của đường thẳng \(MG\) và đường thẳng \(AN\) |
Cho hai đường thẳng $a$ và $b$ cùng song song với $(P)$. Khẳng định nào sau đây là đúng?
$a$ và $b$ chéo nhau | |
Chưa đủ điều kiện để kết luận vị trí tương đối của $a$ và $b$ | |
$a\parallel b$ | |
$a$ và $b$ cắt nhau |