Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y=\ln\big(x^2-2x+m+1\big)$ có tập xác định là $\mathbb{R}$.
![]() | $m=0$ |
![]() | $m< -1$ hoặc $m>0$ |
![]() | $m>0$ |
![]() | $0< m< 3$ |
Cho số thực $m$ sao cho đường thẳng $x=m$ cắt đồ thị hàm số $y=\log_2x$ tại $A$ và đồ thị hàm số $y=\log_2(x+3)$ tại $B$ thỏa mãn $AB=3$. Khẳng định nào dưới đây đúng?
![]() | $m\in\left(\dfrac{1}{3};\dfrac{1}{2}\right)$ |
![]() | $m\in\left(0;\dfrac{1}{3}\right)$ |
![]() | $m\in\left(\dfrac{2}{3};1\right)$ |
![]() | $m\in\left(\dfrac{1}{2};\dfrac{2}{3}\right)$ |
Gọi $S$ là tập hợp các giá trị nguyên của $y$ sao cho ứng với mỗi $y$, tồn tại duy nhất một giá trị $x\in\left[\dfrac{3}{2};\dfrac{9}{2}\right]$ thỏa mãn $\log_3\big(x^3-6x^2+9x+y\big)=\log_2\big(-x^2+6x-5\big)$. Số phần tử của $S$ là
![]() | $7$ |
![]() | $1$ |
![]() | $8$ |
![]() | $3$ |
Có bao nhiêu số nguyên $m$ để phương trình $$\log_{\sqrt{2}}\big(mx-6x^3\big)+2\log_{\tfrac{1}{2}}\big(-14x^2+29x-2\big)=0$$có nghiệm thực duy nhất.
![]() | $18$ |
![]() | Vô số |
![]() | $22$ |
![]() | $23$ |
Tìm tất cả các giá trị thực của tham số $m$ để hàm số $y=\log_2\left(x^2-2x+m\right)$ có tập xác định là $\mathbb{R}$.
![]() | $m\geq1$ |
![]() | $m\leq1$ |
![]() | $m>1$ |
![]() | $m< -1$ |
Cho $\log_25=a$ và $\log_35=b$. Khi đó, $\log_65$ tính theo $a$ và $b$ là
![]() | $a^2+b^2$ |
![]() | $\dfrac{ab}{a+b}$ |
![]() | $\dfrac{1}{a+b}$ |
![]() | $a+b$ |
Với mọi $a$, $b$ thỏa mãn $\log_2a^3+\log_2b=6$, khẳng định nào dưới đây đúng?
![]() | $a^3b=64$ |
![]() | $a^3b=36$ |
![]() | $a^3+b=64$ |
![]() | $a^3+b=36$ |
Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng
![]() | $13$ |
![]() | $18$ |
![]() | $5$ |
![]() | $8$ |
Cho $a,\,b$ là các số thực dương thỏa mãn $\log_{27}a=\log_3\left(a\sqrt[3]{b}\right)$. Mệnh đề nào dưới đây đúng?
![]() | $a^2+b=1$ |
![]() | $a+b^2=1$ |
![]() | $ab^2=1$ |
![]() | $a^2b=1$ |
Với mọi $a,\,b$ thỏa mãn $\log_2a-3\log_2b=2$, khẳng định nào dưới đây đúng?
![]() | $a=4b^3$ |
![]() | $a=3b+4$ |
![]() | $a=3b+2$ |
![]() | $a=\dfrac{4}{b^3}$ |
Đặt \(a=\log_23\), \(b=\log_53\). Nếu biểu diễn \(\log_645=\dfrac{a(m+nb)}{b(a+p)}\) với \(m,\,n,\,p\in\mathbb{N}\) thì \(m+n+p\) bằng
![]() | \(3\) |
![]() | \(4\) |
![]() | \(6\) |
![]() | \(-3\) |
Phương trình \(2^{x-2}=3^{x^2+2x-8}\) có một nghiệm dạng \(x=\log_ab-4\) với \(a,\,b\) là các số nguyên dương thuộc khoảng \((1;5)\). Khi đó, \(a+2b\) bằng
![]() | \(6\) |
![]() | \(9\) |
![]() | \(14\) |
![]() | \(7\) |
Đặt \(\log_25=a\), khi đó \(\log_{25}16\) bằng
![]() | \(\dfrac{1}{2a}\) |
![]() | \(\dfrac{2}{a}\) |
![]() | \(2a\) |
![]() | \(\dfrac{a}{2}\) |
Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng
![]() | \(-\dfrac{3}{2}\) |
![]() | \(3\) |
![]() | \(1\) |
![]() | \(\dfrac{3}{2}\) |
Cho phương trình \(\log_2^2(2x)-(m+2)\log_2x+m-2=0\) (\(m\) là tham số thực). Tập hợp tất cả các giá trị của \(m\) để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn \([1;2]\) là
![]() | \(\left(1;2\right)\) |
![]() | \(\left[1;2\right]\) |
![]() | \(\left[1;2\right)\) |
![]() | \(\left[2;+\infty\right)\) |
Tập nghiệm của bất phương trình \(\log_2^2x-3\log_2x+2<0\) là khoảng \((a;b)\). Tính \(a^2+b^2\).
![]() | \(16\) |
![]() | \(5\) |
![]() | \(20\) |
![]() | \(10\) |
Tập hợp các giá trị thực của tham số \(m\) để phương trình \(\log_2x=m\) có nghiệm là
![]() | \((0;+\infty)\) |
![]() | \([0;+\infty)\) |
![]() | \((-\infty;0)\) |
![]() | \(\mathbb{R}\) |
Cho \(\log_5a=5\) và \(\log_3b=\dfrac{2}{3}\). Tính giá trị của biểu thức $$I=2\log_6\left[\log_5(5a)\right]+\log_{\tfrac{1}{9}}b^3.$$
![]() | \(I=3\) |
![]() | \(I=-2\) |
![]() | \(I=1\) |
![]() | \(I=2\log_65+1\) |
Đặt \(\log_23=a\), khi đó \(\log_318\) bằng
![]() | \(\dfrac{2a+1}{a}\) |
![]() | \(\dfrac{a}{2a+1}\) |
![]() | \(\dfrac{2a}{a+1}\) |
![]() | \(\dfrac{a+1}{2a}\) |
Đặt \(\log_25=a\), khi đó \(\log_{25}16\) bằng
![]() | \(\dfrac{2}{a}\) |
![]() | \(2a\) |
![]() | \(\dfrac{1}{2a}\) |
![]() | \(\dfrac{a}{2}\) |