Ngân hàng bài tập

Bài tập tương tự

S

Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(a^3\). Gọi \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(CC'\). Tính thể tích khối chóp \(ABMN\).

\(\dfrac{2a^3}{3}\)
\(\dfrac{a^3}{3}\)
\(\dfrac{a^3\sqrt{3}}{2}\)
\(a^3\sqrt{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.

$V=\dfrac{7\sqrt{6}a^3}{72}$
$V=\dfrac{7\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{72}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.

$\dfrac{a^3\sqrt{7}}{18}$
$\dfrac{a^3\sqrt{7}}{6}$
$\dfrac{a^3\sqrt{7}}{3}$
$\dfrac{a^3\sqrt{7}}{12}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng

$\dfrac{3}{2}a^3$
$\dfrac{1}{2}a^3$
$2\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{3}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M$ là trung điểm của $BB'$. Mặt phẳng $(MDC')$ chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh $C$ và một khối chứa đỉnh $A'$. Gọi $V_1,\,V_2$ lần lượt là thể tích hai khối đa diện chứa $C$ và $A'$. Tỉ số $\dfrac{V_1}{V_2}$ bằng

$\dfrac{V_1}{V_2}=\dfrac{7}{17}$
$\dfrac{V_1}{V_2}=\dfrac{7}{24}$
$\dfrac{V_1}{V_2}=\dfrac{17}{24}$
$\dfrac{V_1}{V_2}=\dfrac{7}{12}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $SA=SB=SC=AC=a$, $SB$ tạo với mặt phẳng $(SAC)$ một góc $30^\circ$. Thể tích khối chóp đã cho bằng

$\dfrac{a^3}{4}$
$\dfrac{a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{\sqrt{3}a^3}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Nếu khối lăng trụ $ABC.A'B'C'$ có thể tích $V$ thì khối chóp $A'.ABC$ có thể tích bằng

$\dfrac{V}{3}$
$V$
$\dfrac{2V}{3}$
$3V$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho tứ diện $ABCD$, trên các cạnh $BC$, $BD$, $AC$ lần lượt lấy các điểm $M,\,N,\,P$ sao cho $BC=3BM$, $BD=\dfrac{3}{2}BN$, $AC=2AP$. Mặt phẳng $(MNP)$ chia khối tứ diện $ABCD$ thành hai khối đa diện có thể tích là $V_1$, $V_2$, trong đó khối đa diện chứa cạnh $CD$ có thể tích là $V_2$. Tính tỉ số $\dfrac{V_1}{V_2}$.

$\dfrac{V_1}{V_2}=\dfrac{26}{19}$
$\dfrac{V_1}{V_2}=\dfrac{26}{13}$
$\dfrac{V_1}{V_2}=\dfrac{3}{19}$
$\dfrac{V_1}{V_2}=\dfrac{15}{19}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.

$\dfrac{a^3\sqrt{7}}{9}$
$\dfrac{a^3\sqrt{7}}{6}$
$\dfrac{a^3\sqrt{7}}{12}$
$\dfrac{a^3\sqrt{7}}{18}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng

$3a^3$
$a^3$
$12\sqrt{2}a^3$
$4\sqrt{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$ và có $AB=a$, $BC=a\sqrt{3}$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3\sqrt{6}}{12}$
$V=\dfrac{a^3\sqrt{6}}{4}$
$V=\dfrac{a^3\sqrt{6}}{6}$
$V=\dfrac{a^3\sqrt{6}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho lăng trụ $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình chữ nhật với $AB=\sqrt{6}$, $AD=\sqrt{3}$, $A'C=3$ và mặt phẳng $\left(AA'C'C\right)$ vuông góc với mặt đáy. Biết hai mặt phẳng $\left(AA'C'C\right)$, $\left(AA'B'B\right)$ tạo với nhau góc $\alpha$ thỏa mãn $\tan\alpha =\dfrac{3}{4}$. Thể tích khối lăng trụ $ABCD.A'B'C'D'$ bằng

$V=6$
$V=8$
$V=12$
$V=10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối hộp chữ nhật $ABCD.A'B'C'D'$ có đáy hình vuông. $BD=2a$, góc giữa hai mặt phẳng $\left(A'BD\right)$ và $(ABCD)$ bằng $30^\circ$. Thể tích của khối hộp chữ nhật đã cho bằng

$6\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{9}a^3$
$2\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{3}a^3$
1 lời giải Sàng Khôn
Lời giải Tương tự