Trong không gian $Oxyz$, cho hai điểm $A(5;2;1)$ và $B(1;0;1)$. Phương trình của mặt cầu đường kính $AB$ là
$(x+3)^2+(y+1)^2+(z+1)^2=5$ | |
$(x-3)^2+(y-1)^2+(z-1)^2=20$ | |
$(x-3)^2+(y-1)^2+(z-1)^2=5$ | |
$(x+3)^2+(y+1)^2+(z+1)^2=20$ |
Trong không gian $Oxyz$, cho hai điểm $A(-2;1;0)$, $B(2;-1;2)$. Mặt cầu đường kính $AB$ có phương trình là
$x^2+y^2+(z-2)^2=\sqrt{24}$ | |
$(x+4)^2+(y-2)^2+(z+2)^2=\sqrt{6}$ | |
$(x-4)^2+(y+2)^2+(z-2)^2=24$ | |
$x^2+y^2+(z-1)^2=6$ |
Trong không gian $Oxyz$, cho hai điểm $A(2;2;-1)$, $B(-4;2;-9)$. Phương trình mặt cầu có đường kính $AB$ là
$(x+3)^2+y^2+(z+4)^2=5$ | |
$(x+1)^2+(y-2)^2+(z+5)^2=25$ | |
$(x+2)^2+(y-4)^2+(z+10)^2=25$ | |
$(x+1)^2+(y-2)^2+(z+5)^2=5$ |
Trong không gian $Oxyz$, cho hai điểm $A(7;-2;2)$ và $B(1;2;4)$. Phương trình nào dưới đây là phương trình mặt cầu đường kính $AB$?
$(x-4)^2+y^2+(z-3)^2=2\sqrt{14}$ | |
$(x-4)^2+y^2+(z-3)^2=14$ | |
$(x-4)^2+y^2+(z-3)^2=56$ | |
$(x-7)^2+(y+2)^2+(z-2)^2=14$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-3)^2+(y-2)^2+(z-6)^2=56$ và đường thẳng $\Delta\colon\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-5}{1}$. Biết rằng đường thẳng $\Delta$ cắt $(S)$ tại điểm $A\left(x_0;y_0;z_0\right)$ với $x_0>0$. Giá trị của $y_0+z_0-2x_0$ bằng
$30$ | |
$-1$ | |
$9$ | |
$2$ |
Trong không gian $Oxyz$, cho hai điểm $A(4;-2;1)$ và $B(0;-2;-1)$. Phương trình mặt cầu có đường kính $AB$ là
$(x-2)^2+(y+2)^2+z^2=5$ | |
$(x+2)^2+(y-2)^2+z^2=5$ | |
$(x-2)^2+(y+2)^2+z^2=20$ | |
$(x+2)^2+(y-2)^2+z^2=20$ |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y+2\right)^2+\left(z+1\right)^2=16\). Tìm tọa độ tâm \(I\) của mặt cầu \(\left(S\right)\).
\(I=\left(1;-2;-1\right)\) | |
\(I=\left(-1;-2;-1\right)\) | |
\(I=\left(1;-2;1\right)\) | |
\(I=\left(-1;-2;-1\right)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-2;3)\) và \(B(5;4;7)\). Phương trình mặt cầu nhận \(AB\) làm đường kính là
\((x-6)^2+(y-2)^2+(z-10)^2=17\) | |
\((x-1)^2+(y+2)^2+(z-3)^2=17\) | |
\((x-3)^2+(y-1)^2+(z-5)^2=17\) | |
\((x-5)^2+(y-4)^2+(z-7)^2=17\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(-1;2;0)\), \(B(1;-2;2)\). Phương trình mặt cầu đường kính \(AB\) là
\(x^2+y^2+(z-1)^2=6\) | |
\(x^2+y^2+(z-2)^2=9\) | |
\(x^2+y^2+(z+1)^2=6\) | |
\((x-2)^2+(y+4)^2+(z-2)^2=24\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-2;7)\), \(B(-3;8;-1)\). Mặt cầu đường kính \(AB\) có phương trình là
\((x+1)^2+(y-3)^2+(z-3)^2=\sqrt{45}\) | |
\((x-1)^2+(y+3)^2+(z+3)^2=45\) | |
\((x-1)^2+(y-3)^2+(z+3)^2=\sqrt{45}\) | |
\((x+1)^2+(y-3)^2+(z-3)^2=45\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=4$ và đường thẳng $d$ đi qua điểm $A(1;0;-2)$, nhận $\overrightarrow{u}=(1;a;1-a)$ (với $a\in\mathbb{R}$) làm vectơ chỉ phương. Biết rằng $d$ cắt $(S)$ tại hai điểm phân biệt mà các tiếp diện của $(S)$ tại hai điểm đó vuông góc với nhau. Hỏi $a^2$ thuộc khoảng nào dưới đây?
$\left(\dfrac{1}{2};\dfrac{3}{2}\right)$ | |
$\left(\dfrac{3}{2};2\right)$ | |
$\left(7;\dfrac{15}{2}\right)$ | |
$\left(0;\dfrac{1}{4}\right)$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)$ có tâm $I(1;2;-1)$ và bán kính $R=2$. Phương trình của $(S)$ là
$(x-1)^2+(y-2)^2+(z+1)^2=4$ | |
$(x-1)^2+(y-2)^2+(z+1)^2=2$ | |
$(x+1)^2+(y+2)^2+(z-1)^2=2$ | |
$(x+1)^2+(y+2)^2+(z-1)^2=4$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng
$2\sqrt{2}$ | |
$2+2\sqrt{2}$ | |
$-2\sqrt{2}$ | |
$4+\sqrt{2}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+1)^2+(y-3)^2+(z-2)^2=25$. Tâm $I$ và bán kính $R$ của mặt cầu $(S)$ là
$I(-1;3;2),\,R=25$ | |
$I(1;-3;-2),\,R=5$ | |
$I(-1;3;2),\,R=5$ | |
$I(1;-3;-2),\,R=25$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian $Oxyz$, cho mặt cầu có phương trình $x^2+y^2+z^2-2x+4y-6z+9=0$. Tọa độ tâm $I$ và bán kính $R$ của mặt cầu là
$I(-1;2;-3)$ và $R=5$ | |
$I(-1;2;-3)$ và $R=\sqrt{5}$ | |
$I(1;-2;3)$ và $R=5$ | |
$I(1;-2;3)$ và $R=\sqrt{5}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2-2x-4y-6z+1=0$. Tâm của $(S)$ có tọa độ là
$(-1;-2;-3)$ | |
$(2;4;6)$ | |
$(-2;-4;-6)$ | |
$(1;2;3)$ |
Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+(z-3)^2=8$ và hai điểm $A(4;4;3)$, $B(1;1;1)$. Gọi $\big(\mathscr{C}_1\big)$ là tập hợp các điểm $M\in(S)$ sao cho $|MA-2MB|$ đạt giá trị nhỏ nhất. Biết rằng $\big(\mathscr{C}_1\big)$ là một đường tròn có bán kính $R_1$. Tính $R_1$.
$\sqrt{7}$ | |
$\sqrt{6}$ | |
$2\sqrt{2}$ | |
$\sqrt{3}$ |
Trong không gian $Oxyz$, tâm $I$ của mặt cầu $(S)\colon(x+2)^2+(y-1)^2+z^2=4$ có tọa độ là
$I(-2;1;0)$ | |
$I(2;-1;0)$ | |
$I(-2;1;1)$ | |
$I(-2;-1;0)$ |