Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là
![]() | $-3$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $0$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
![]() | $\overrightarrow{u_2}=(5;-4;-3)$ |
![]() | $\overrightarrow{u_1}=(5;16;-13)$ |
![]() | $\overrightarrow{u_3}=(5;-16;-13)$ |
![]() | $\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, cho đường thẳng $(d)\colon\begin{cases} x=1-t\\ y=-2+2t\\ z=1+t \end{cases}$. Vectơ nào là vectơ chỉ phương của $d$?
![]() | $\overrightarrow{u}=(-1;-2;1)$ |
![]() | $\overrightarrow{u}=(1;2;1)$ |
![]() | $\overrightarrow{u}=(1;-2;1)$ |
![]() | $\overrightarrow{u}=(-1;2;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=2+t\\ y=1-2t\\ z=-1+3t \end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
![]() | $\overrightarrow{u_1}=(2;1;-1)$ |
![]() | $\overrightarrow{u_2}=(1;2;3)$ |
![]() | $\overrightarrow{u_3}=(1;-2;3)$ |
![]() | $\overrightarrow{u_4}=(2;1;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=1-t\\ y=-2+2t\\ z=1+t\end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
![]() | $\overrightarrow{u}=\left(1;-2;1\right)$ |
![]() | $\overrightarrow{u}=\left(1;2;1\right)$ |
![]() | $\overrightarrow{u}=\left(-1;2;1\right)$ |
![]() | $\overrightarrow{u}=\left(-1;-2;1\right)$ |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
![]() | $1$ |
![]() | $2$ |
![]() | $3$ |
![]() | $4$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
![]() | $\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ |
![]() | $\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ |
![]() | $\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ |
![]() | $\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+5}{3}$. Tìm tọa độ một vectơ chỉ phương của đường thẳng $d$.
![]() | $\overrightarrow{a}=(2;-1;3)$ |
![]() | $\overrightarrow{b}=(2;1;3)$ |
![]() | $\overrightarrow{u}=(3;1;-5)$ |
![]() | $\overrightarrow{q}=(-3;1;5)$ |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-3}{2}=\dfrac{y-4}{-5}=\dfrac{z+1}{3}\). Vectơ nào dưới đây là một vectơ chỉ phương của \(d\)?
![]() | \(\overrightarrow{u_2}=\left(2;4;-1\right)\) |
![]() | \(\overrightarrow{u_1}=\left(2;-5;3\right)\) |
![]() | \(\overrightarrow{u_3}=\left(2;5;3\right)\) |
![]() | \(\overrightarrow{u_4}=\left(3;4;1\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta\colon\begin{cases}x=2+t\\y=3-t\\z=1\end{cases}\). Tìm tọa độ một vectơ chỉ phương của \(\Delta\).
![]() | \(\overrightarrow{u}=(1;-1;0)\) |
![]() | \(\overrightarrow{u}=(1;-1;1)\) |
![]() | \(\overrightarrow{u}=(2;3;1)\) |
![]() | \(\overrightarrow{u}=(2;3;0)\) |
Phương trình đường thẳng \(\Delta\) đi qua điểm \(A(3;2;1)\) và song song với đường thẳng \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z+3}{1}\) là
![]() | \(\begin{cases}x=3-2t\\ y=2-4t\\ z=1-t\end{cases}\) |
![]() | \(\begin{cases}x=2+3t\\ y=4+2t\\ z=1+t\end{cases}\) |
![]() | \(\begin{cases}x=2t\\ y=4t\\ z=3+t\end{cases}\) |
![]() | \(\begin{cases}x=3+2t\\ y=2-4t\\ z=1+t\end{cases}\) |
Trong không gian \(Oxyz\), cho hai đường thẳng \(d_1\colon\begin{cases}
x=1+t\\ y=2-t\\ z=3+2t\end{cases}\) và \(d_2\colon\dfrac{x-1}{2}=\dfrac{y-m}{1}=\dfrac{z+2}{-1}\) (với \(m\) là tham số). Tìm \(m\) để \(d_1\) và \(d_2\) cắt nhau.
![]() | \(m=9\) |
![]() | \(m=4\) |
![]() | \(m=5\) |
![]() | \(m=7\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z-2}{-1}\) và hai điểm \(A(-1;3;1)\), \(B(0;2;-1)\). Gọi \(C(m;n;p)\) là điểm thuộc \(d\) sao cho diện tích của tam giác \(ABC\) bằng \(2\sqrt{2}\). Giá trị của \(T=m+n+p\) bằng
![]() | \(T=0\) |
![]() | \(T=-1\) |
![]() | \(T=-2\) |
![]() | \(T=3\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z-2}{1}\), mặt phẳng \((P)\colon x+y-2z+5=0\) và điểm \(A(1;-1;2)\). Đường thẳng \(\Delta\) cắt \(d\) và \((P)\) lần lượt tại \(M\) và \(N\) sao cho \(A\) là trung điểm của \(MN\). Một vectơ chỉ phương của \(\Delta\) là
![]() | \(\vec{u}=(2;3;2)\) |
![]() | \(\vec{u}=(1;-1;2)\) |
![]() | \(\vec{u}=(-3;5;1)\) |
![]() | \(\vec{u}=(4;5;-13)\) |
Trong không gian \(Oxyz\), gọi \(d'\) là hình chiếu vuông góc của đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y-2}{3}=\dfrac{z+3}{1}\) trên mặt phẳng tọa độ \((Oxy)\). Vectơ nào dưới đây là một vectơ chỉ phương của \(d'\)?
![]() | \(\vec{u}=(2;3;0)\) |
![]() | \(\vec{u}=(2;3;1)\) |
![]() | \(\vec{u}=(-2;3;0)\) |
![]() | \(\vec{u}=(2;-3;0)\) |
Trong không gian \(Oxyz\), vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \(d\colon\begin{cases}x=1+t\\ y=4\\ z=3-2t\end{cases}\)?
![]() | \(\vec{u}=(1;4;3)\) |
![]() | \(\vec{u}=(1;4;-2)\) |
![]() | \(\vec{u}=(1;0;-2)\) |
![]() | \(\vec{u}=(1;0;2)\) |
Trong không gian \(Oxyz\), đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y-3}{-4}=\dfrac{z-7}{1}\) nhận vectơ nào dưới đây là một vectơ chỉ phương?
![]() | \(\vec{a}=(-2;-4;1)\) |
![]() | \(\vec{b}=(2;4;1)\) |
![]() | \(\vec{c}=(1;-4;2)\) |
![]() | \(\vec{d}=(2;-4;1)\) |
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
![]() | $cd=3$ |
![]() | $cd=0$ |
![]() | $cd=12$ |
![]() | $cd=6$ |
Trong không gian $Oxyz$, gọi $M(a;b;c)$ là giao điểm của đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-3}{-1}=\dfrac{z-2}{1}$ và mặt phẳng $(P)\colon2x+3y-4z+4=0$. Tính $T=a+b+c$.
![]() | $T=\dfrac{3}{2}$ |
![]() | $T=6$ |
![]() | $T=4$ |
![]() | $T=-\dfrac{5}{2}$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng
![]() | $5$ |
![]() | $-2$ |
![]() | $-5$ |
![]() | $0$ |