Cho hàm số $f(x)=ax^3+cx+d$ ($a\neq0$) có $\min\limits_{x\in(0;+\infty)}f(x)=f(2)$. Tìm giá trị lớn nhất của hàm số trên đoạn $[-3;1]$.
$24a+d$ | |
$d-16a$ | |
$8a-d$ | |
$d+16a$ |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
$3$ | |
$-1$ | |
$1$ | |
$2$ |
Giá trị nhỏ nhất của hàm số $y=x^3-3x^2$ trên đoạn $[1;5]$ bằng
$50$ | |
$-4$ | |
$-45$ | |
$-2$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
$m=-4$ | |
$m=-2$ | |
$m=2$ | |
$m=4$ |
Trên đoạn $[0;3]$, hàm số $y=-x^3+3x$ đạt giá trị lớn nhất tại điểm
$x=0$ | |
$x=3$ | |
$x=1$ | |
$x=2$ |
Giá trị nhỏ nhất của hàm số \(f\left(x\right)=x^3-24x\) trên đoạn \(\left[2;19\right]\) bằng
\(32\sqrt{2}\) | |
\(-40\) | |
\(-32\sqrt{2}\) | |
\(-45\) |
Một chất điểm chuyển động theo phương trình \(S=-2t^3+18t^2+1\), trong đó \(t\) tính bằng giây và \(S\) tính bằng mét. Mất bao lâu kể từ lúc xuất phát để chất điểm đạt vận tốc lớn nhất?
\(5\) giây | |
\(6\) giây | |
\(3\) giây | |
\(1\) giây |
Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^3-3x^2+1\) trên đoạn \([1;2]\). Khi đó tổng \(M+N\) bằng
\(2\) | |
\(-2\) | |
\(0\) | |
\(-4\) |
Giá trị nhỏ nhất \(m\) của hàm số \(y=x^3-3x+5\) trên đoạn \([2;4]\) là
\(0\) | |
\(5\) | |
\(7\) | |
\(3\) |
Giá trị lớn nhất của hàm số \(y=x(5-2x)^2\) trên đoạn \([0;3]\) là
\(\dfrac{250}{3}\) | |
\(0\) | |
\(\dfrac{250}{27}\) | |
\(\dfrac{125}{27}\) |
Tìm giá trị lớn nhất của hàm số \(f(x)=x^3-5x^2+3x-1\) trên đoạn \([2;4]\).
\(\max\limits_{[2;4]}f(x)=-5\) | |
\(\max\limits_{[2;4]}f(x)=-10\) | |
\(\max\limits_{[2;4]}f(x)=-7\) | |
\(\max\limits_{[2;4]}f(x)=1\) |
Tìm giá trị lớn nhất của hàm số \(f(x)=2x^3+3x^2-12x+2\) trên đoạn \([-1;2]\).
\(\max\limits_{[-1;2]}f(x)=10\) | |
\(\max\limits_{[-1;2]}f(x)=6\) | |
\(\max\limits_{[-1;2]}f(x)=11\) | |
\(\max\limits_{[-1;2]}f(x)=15\) |
Tìm giá trị lớn nhất của hàm số \(f(x)=x^3-8x^2+16x-9\) trên đoạn \([1;3]\).
\(\max\limits_{[1;3]}f(x)=5\) | |
\(\max\limits_{[1;3]}f(x)=\dfrac{13}{27}\) | |
\(\max\limits_{[1;3]}f(x)=-6\) | |
\(\max\limits_{[1;3]}f(x)=0\) |
Giá trị lớn nhất của hàm số \(y=x^3-3x+4\) trên đoạn \([-2;2]\) là
\(10\) | |
\(6\) | |
\(24\) | |
\(4\) |
Giá trị nhỏ nhất của hàm số \(y=x^3-3x+5\) trên đoạn \([2;4]\) là
\(3\) | |
\(7\) | |
\(5\) | |
\(0\) |
Kí hiệu $M$ và $m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2+\sqrt{4-x^2}$. Khi đó $M+m$ bằng
$\dfrac{25}{4}$ | |
$\dfrac{15}{4}$ | |
$4$ | |
$\dfrac{1}{4}$ |
Giá trị nhỏ nhất của hàm số $f(x)=x^4-10x^2+2$ trên đoạn $[-1;2]$ bằng
$-1$ | |
$2$ | |
$-23$ | |
$-22$ |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.
Khẳng định nào sau đây đúng?
$\max\limits_{[-1;3]}f(x)=f(0)$ | |
$\max\limits_{[-1;3]}f(x)=f(3)$ | |
$\max\limits_{[-1;3]}f(x)=f(-1)$ | |
$\max\limits_{[-1;3]}f(x)=f(2)$ |
Tìm giá trị nhỏ nhất của hàm số $y=x+\dfrac{3}{x}-4$ trên đoạn $[1;5]$.
$\dfrac{8}{5}$ | |
$4-2\sqrt{3}$ | |
$0$ | |
$2\sqrt{3}-4$ |
Tìm giá trị nhỏ nhất của hàm số $y=2\sqrt{x+2}$ trên đoạn $[-1;3]$.
$1$ | |
$2$ | |
$4$ | |
$-1$ |