Ngân hàng bài tập

Bài tập tương tự

S

Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=1$, $BC=2$, $AA'=2$ (tham khảo hình bên).

Khoảng cách giữa hai đường thẳng $AD'$ và $DC'$ bằng

$\sqrt{2}$
$\dfrac{\sqrt{6}}{2}$
$\dfrac{2\sqrt{5}}{5}$
$\dfrac{\sqrt{6}}{3}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$. Hình chiếu vuông góc của $A'$ lên mặt phẳng $(ABC)$ là điểm $I$ thuộc cạnh $BC$. Khoảng cách từ $A$ tới mặt phẳng $(A'BC)$ bằng

$\dfrac{2}{5}a$
$\dfrac{\sqrt{3}}{2}a$
$\dfrac{2a\sqrt{5}}{5}$
$\dfrac{a\sqrt{5}}{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng

$\dfrac{\sqrt{3}}{3}a$
$\sqrt{2}a$
$\dfrac{2\sqrt{3}}{3}a$
$\dfrac{\sqrt{2}}{2}a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $B$, $AC=2$, $AB=\sqrt{3}$ và $AA'=1$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(ABC')$ và $(ABC)$ bằng

$30^\circ$
$45^\circ$
$90^\circ$
$60^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB=2a\), \(AD=DC=CB=a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=3a\) (như hình minh họa trên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng

\(\dfrac{3a}{4}\)
\(\dfrac{3a}{2}\)
\(\dfrac{3\sqrt{13}a}{13}\)
\(\dfrac{6\sqrt{13}a}{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho lăng trụ đứng $ABC.A'B'C'$ có tất cả các cạnh bằng nhau và bằng $a$ (tham khảo hình bên).

Khoảng cách từ điểm $A$ đến mặt phẳng $(BCC'B')$ bằng

$\dfrac{a\sqrt{3}}{4}$
$a$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau và $OA=OB=OC=a$. Gọi $D$ là trung điểm của đoạn $BC$. Khoảng cách giữa hai đường thẳng $OD$ và $AB$ bằng

$\dfrac{a\sqrt{3}}{3}$
$\dfrac{a\sqrt{6}}{2}$
$\dfrac{a\sqrt{6}}{3}$
$\dfrac{a\sqrt{3}}{2}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$ và $AB=4$ (tham khảo hình bên).

Khoảng cách từ $C$ đến mặt phẳng $\left(ABB'A'\right)$ bằng

$2\sqrt{2}$
$2$
$\sqrt{2}$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(CC'\) (tham khảo hình vẽ).

Khoảng cách từ \(M\) đến mặt phẳng \(\left(A'BC\right)\) bằng

\(\dfrac{\sqrt{21}a}{14}\)
\(\dfrac{\sqrt{2}a}{2}\)
\(\dfrac{\sqrt{21}a}{7}\)
\(\dfrac{\sqrt{2}a}{4}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB=2a\), \(AC=4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\) (minh họa như hình vẽ). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng

\(\dfrac{2a}{3}\)
\(\dfrac{a\sqrt{6}}{3}\)
\(\dfrac{a\sqrt{3}}{3}\)
\(\dfrac{a}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M$ là trung điểm của $BB'$. Mặt phẳng $(MDC')$ chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh $C$ và một khối chứa đỉnh $A'$. Gọi $V_1,\,V_2$ lần lượt là thể tích hai khối đa diện chứa $C$ và $A'$. Tỉ số $\dfrac{V_1}{V_2}$ bằng

$\dfrac{V_1}{V_2}=\dfrac{7}{17}$
$\dfrac{V_1}{V_2}=\dfrac{7}{24}$
$\dfrac{V_1}{V_2}=\dfrac{17}{24}$
$\dfrac{V_1}{V_2}=\dfrac{7}{12}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối hộp chữ nhật $ABCD.A'B'C'D'$ có đáy hình vuông. $BD=2a$, góc giữa hai mặt phẳng $\left(A'BD\right)$ và $(ABCD)$ bằng $30^\circ$. Thể tích của khối hộp chữ nhật đã cho bằng

$6\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{9}a^3$
$2\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{3}a^3$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=AD=2$ và $AA'=2\sqrt{2}$ (tham khảo hình bên).

Góc giữa đường thẳng $CA'$ và mặt phẳng $(ABCD)$ bằng

$30^\circ$
$45^\circ$
$60^\circ$
$90^\circ$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Các kích thước của một bể bơi được cho trên hình vẽ (mặt nước có dạng hình chữ nhật).

Hãy tính xem bể bơi chứa được bao nhiêu mét khối nước khi nó đầy ắp nước?

$1000$m$^3$
$640$m$^3$
$570$m$^3$
$500$m$^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi bằng $8$m$^3$, thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường, giá tôn làm đáy thùng là $100.000$ đồng/m$^2$, giá tôn làm thành xung quanh thùng là $50.000$ đồng/m$^2$. Hỏi người bán gạo đó cần đóng thùng đựng gạo với cạnh đáy bằng bao nhiêu để chi phí mua nguyên liệu là nhỏ nhất?

$3$m
$1{,}5$m
$2$m
$1$m
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính thể tích của khối gỗ có hình dạng dưới đây

$328$cm$^3$
$456$cm$^3$
$584$cm$^3$
$712$cm$^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.

$60^\circ$
$45^\circ$
$30^\circ$
$75^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình lăng trụ có cạnh bên vuông góc với mặt đáy, khi đó các mặt bên của lăng trụ là hình gì?

Hình chữ nhật
Hình bình hành
Hình thoi
Hình vuông
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng

$60^{\circ}$
$30^{\circ}$
$90^{\circ}$
$45^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho 5 khẳng định sau về hình lăng trụ. Hỏi có bao nhiêu khẳng định đúng?

  • Hình lăng trụ có tất cả các mặt bên đều là hình bình hành;
  • Hình lăng trụ có 2 đáy là những đa giác bằng nhau và nằm trên 2 mặt phẳng song song;
  • Hình lăng trụ có tất cả các cạnh bên song song và bằng nhau;
  • Hình lăng trụ có 2 đáy đều là hình bình hành;
  • Hình lăng trụ có tất cả các mặt bên đều là những hình chữ nhật.
$4$
$5$
$3$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự