Ngân hàng bài tập

Bài tập tương tự

Cho tứ diện đều \(ABCD\) cạnh \(a\). Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\), \(SA\) vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left(SBC\right)\) và mặt phẳng đáy bằng \(60^\circ\). Diện tích của mặt cầu ngoại tiếp hình chóp \(S.ABC\) bằng

\(\dfrac{172\pi a^2}{3}\)
\(\dfrac{76\pi a^2}{3}\)
\(84\pi a^2\)
\(\dfrac{172\pi a^2}{9}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.

\(M\left(0;0;1\right)\)
\(M\left(2;-4;-1\right)\)
\(M\left(4;0;3\right)\)
\(M\left(0;-1;0\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng

\(2\)
\(-1\)
\(-2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là

\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\)
\(x^2+y^2+z^2+2y-60=0\)
\(x^2+y^2+z^2-2y+55=0\)
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là

\(x^2+(y+1)^2+(z+2)^2=64\)
\(x^2+(y-1)^2+(z-2)^2=67\)
\(x^2+(y-1)^2+(z+2)^2=3\)
\(x^2+(y+1)^2+(z-2)^2=64\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2y-2z-1=0\) và mặt phẳng \((P)\colon2x+2y-2z+15=0\). Tính khoảng cách ngắn nhất giữa điểm \(M\in(S)\) và điểm \(N\in(P)\).

\(\dfrac{3\sqrt{3}}{2}\)
\(\dfrac{3\sqrt{2}}{3}\)
\(\dfrac{3}{2}\)
\(\dfrac{2}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho ba điểm \(A(2;0;0)\), \(B(0;4;0)\) và \(C(0;0;6)\). Viết phương trình mặt cầu ngoại tiếp tứ diện \(OABC\).

\((x+1)^2+(y+2)^2+(z+3)^2=56\)
\((x+1)^2+(y+2)^2+(z+3)^2=28\)
\((x-1)^2+(y-2)^2+(z-3)^2=14\)
\((x-1)^2+(y-2)^2+(z-3)^2=28\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho đường tròn \((\mathscr{C})\) có tâm \(H(-1;1;1)\), bán kính \(r=2\) nằm trên mặt phẳng \((P)\colon x-2y+2z+1=0\). Diện tích của mặt cầu có tâm thuộc mặt phẳng \((Q)\colon x+y+z=0\) và chứa đường tròn \((C)\) bằng

\(26\pi\)
\(2\pi\)
\(52\pi\)
\(40\pi\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng

\(\dfrac{\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{7}\)
\(\dfrac{4\sqrt{14}}{7}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho \(A(-1;0;0)\), \(B(0;0;2)\), \(C(0;-3;0)\). Tính bán kính mặt cầu ngoại tiếp tứ diện \(OABC\).

\(R=\dfrac{\sqrt{14}}{4}\)
\(R=\sqrt{14}\)
\(R=\dfrac{\sqrt{14}}{3}\)
\(R=\dfrac{\sqrt{14}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.

$\dfrac{5\sqrt{2}}{2}$
$\dfrac{5}{2}$
$\dfrac{2\sqrt{5}}{3}$
$\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.

$\dfrac{5\sqrt{2}}{2}$
$\dfrac{5}{2}$
$\dfrac{2\sqrt{5}}{3}$
$\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Trong không gian $Oxyz$, xét mặt cầu $(S)$ có tâm $I(4;8;12)$ và bán kính $R$ thay đổi. Có bao nhiêu giá trị nguyên của $R$ sao cho ứng với mỗi giá trị đó, tồn tại hai tiếp tuyến của $(S)$ trong mặt phẳng $(Oyz)$ mà hai tiếp tuyến đó cùng đi qua $O$ và góc giữa chúng không nhỏ hơn $60^\circ$?

$6$
$2$
$10$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=4$ và đường thẳng $d$ đi qua điểm $A(1;0;-2)$, nhận $\overrightarrow{u}=(1;a;1-a)$ (với $a\in\mathbb{R}$) làm vectơ chỉ phương. Biết rằng $d$ cắt $(S)$ tại hai điểm phân biệt mà các tiếp diện của $(S)$ tại hai điểm đó vuông góc với nhau. Hỏi $a^2$ thuộc khoảng nào dưới đây?

$\left(\dfrac{1}{2};\dfrac{3}{2}\right)$
$\left(\dfrac{3}{2};2\right)$
$\left(7;\dfrac{15}{2}\right)$
$\left(0;\dfrac{1}{4}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho hai điểm $A(5;2;1)$ và $B(1;0;1)$. Phương trình của mặt cầu đường kính $AB$ là

$(x+3)^2+(y+1)^2+(z+1)^2=5$
$(x-3)^2+(y-1)^2+(z-1)^2=20$
$(x-3)^2+(y-1)^2+(z-1)^2=5$
$(x+3)^2+(y+1)^2+(z+1)^2=20$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt cầu $(S)$ có tâm $I(1;2;-1)$ và bán kính $R=2$. Phương trình của $(S)$ là

$(x-1)^2+(y-2)^2+(z+1)^2=4$
$(x-1)^2+(y-2)^2+(z+1)^2=2$
$(x+1)^2+(y+2)^2+(z-1)^2=2$
$(x+1)^2+(y+2)^2+(z-1)^2=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng

$2\sqrt{2}$
$2+2\sqrt{2}$
$-2\sqrt{2}$
$4+\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+1)^2+(y-3)^2+(z-2)^2=25$. Tâm $I$ và bán kính $R$ của mặt cầu $(S)$ là

$I(-1;3;2),\,R=25$
$I(1;-3;-2),\,R=5$
$I(-1;3;2),\,R=5$
$I(1;-3;-2),\,R=25$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.

$3$
$1$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự