Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Phát biểu nào không đúng về giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$?
![]() | Song song với $CD$ |
![]() | Đi qua điểm $S$ |
![]() | Song song với $AB$ |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$
![]() | Không tồn tại |
![]() | Đi qua điểm $S$ |
![]() | Đi qua giao điểm $I$ của $AD$ và $BC$ |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy là hình thang $ABCD$ ($AB\parallel CD$). Khẳng định nào sau đây sai?
![]() | $S.ABCD$ có $4$ mặt bên |
![]() | Giao tuyến của $(SAC)$ và $(SBD)$ là $SO$, với $O=AC\cap BD$ |
![]() | Giao tuyến của $(SAD)$ và $(SBC)$ là $SI$, với $I=AD\cap BC$ |
![]() | Giao tuyến của $(SAB)$ và $(SAD)$ là $BD$ |
Cho hình chóp tứ giác $S.ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $SA$ và $SC$. Khẳng định nào sau đây đúng?
![]() | $MN\parallel(ABCD)$ |
![]() | $MN\parallel(SAB)$ |
![]() | $MN\parallel(SCD)$ |
![]() | $MN\parallel(SBC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là
![]() | $SD$ |
![]() | $SO$ ($O$ là tâm của hình bình hành $ABCD$) |
![]() | $SG$ ($G$ là trung điểm cạnh $AB$) |
![]() | $SF$ ($F$ là trung điểm cạnh $CD$) |
Cho $S$ là một điểm không thuộc mặt hình thang $ABCD$ ($AB\parallel CD$ và $AB>CD$). Gọi $I$ là giao điểm của $AD$ và $BC$. Khi đó giao tuyến của hai mặt phẳng $(SAD)$ và $(SCB)$ là
![]() | $BI$ |
![]() | $SD$ |
![]() | $SC$ |
![]() | $SI$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $d$ là giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$. Khẳng định nào sau đây đúng?
![]() | $d$ qua $S$ và song song với $BC$ |
![]() | $d$ qua $S$ và song song với $DC$ |
![]() | $d$ qua $S$ và song song với $AB$ |
![]() | $d$ qua $S$ và song song với $BD$ |
Cho hình chóp $S.ABCD$ có đáy là tứ giác lồi. Hai điểm $G$, $H$ lần lượt là trọng tâm của $\triangle SAB$ và $\triangle SCD$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M$, $N$, $P$ lần lượt là trung điểm các cạnh $BC$, $CD$, $SA$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $O$. Lấy điểm $M$ trên cạnh $SA$, trung điểm $CD$ là $N$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
![]() | $SI$ |
![]() | $SA$ |
![]() | $SB$ |
![]() | $SC$ |
Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).
Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
![]() | $\dfrac{\sqrt{3}}{3}a$ |
![]() | $\sqrt{2}a$ |
![]() | $\dfrac{2\sqrt{3}}{3}a$ |
![]() | $\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABC$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $SA,\,SB,\,SC$. Chọn khẳng định đúng.
![]() | $(MNP)\parallel(ABC)$ |
![]() | $(MNP)\parallel(SAC)$ |
![]() | $(SMN)\parallel(ABC)$ |
![]() | $(MNP)\parallel(SBC)$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.
Khẳng định nào sau đây là đúng?
![]() | $BC\perp(SAB)$ |
![]() | $BC\perp(SBD)$ |
![]() | $BC\perp(SCD)$ |
![]() | $BC\perp(SAC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, $SA$ vuông góc mặt đáy. Hình chiếu vuông góc của $SB$ lên $(ABCD)$ là
![]() | $CB$ |
![]() | $DB$ |
![]() | $AB$ |
![]() | $SA$ |
Cho tứ diện $ABCD$ và điểm $M$ thuộc miền trong của tam giác $ACD$. Gọi $I,\,J$ lần lượt là hai điểm trên cạnh $BC$ và $BD$ sao cho $IJ$ không song song với $CD$. Gọi $H$ là giao điểm của $IJ$ với $CD$, $K$ là giao điểm của $MH$ với $AC$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(IJM)$ là
![]() | $KI$ |
![]() | $KJ$ |
![]() | $MI$ |
![]() | $MH$ |
Cho $4$ điểm không đồng phẳng $A,\,B,\,C,\,D$. Gọi $I,\,K$ lần lượt là trung điểm của $AD$ và $BC$. Giao tuyến của $(IBC)$ và $(KAD)$ là
![]() | $IK$ |
![]() | $BC$ |
![]() | $AK$ |
![]() | $DK$ |
Cho tứ diện $ABCD$. Gọi $G$ là trọng tâm của tam giác $BCD$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(GAB)$ là
![]() | $AM$ ($M$ là trung điểm của $AB$) |
![]() | $AN$ ($N$ là trung điểm của $CD$) |
![]() | $AH$ ($H$ là hình chiếu của $B$ trên $CD$) |
![]() | $AK$ ($K$ là hình chiếu của $C$ trên $BD$) |
Trong mặt phẳng $(\alpha)$, cho bốn điểm $A,\,B,\,C,\,D$ trong đó không có ba điểm nào thẳng hàng. Điểm $S$ không thuộc mặt phẳng $(\alpha)$. Có bao nhiêu mặt phẳng tạo bởi $S$ và $2$ trong $4$ điểm nói trên?
![]() | $4$ |
![]() | $5$ |
![]() | $6$ |
![]() | $8$ |