Ngân hàng bài tập

Bài tập tương tự

A

Với mọi $a$, $b$ thỏa mãn $\log_2a^3+\log_2b=6$, khẳng định nào dưới đây đúng?

$a^3b=64$
$a^3b=36$
$a^3+b=64$
$a^3+b=36$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho $a,\,b$ là các số thực dương thỏa mãn $\log_{27}a=\log_3\left(a\sqrt[3]{b}\right)$. Mệnh đề nào dưới đây đúng?

$a^2+b=1$
$a+b^2=1$
$ab^2=1$
$a^2b=1$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng

\(-\dfrac{3}{2}\)
\(3\)
\(1\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $\log3=a$ và $\log5=b$. Tính $\log_61125$ theo $a$ và $b$.

$\dfrac{3a+2b}{a+1-b}$
$\dfrac{3a-2b}{a+1+b}$
$\dfrac{2a+3b}{a+1-b}$
$\dfrac{3a+2b}{a-1+b}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng

$\dfrac{15}{2}$
$\dfrac{9}{2}$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.

$32$
$29$
$25$
$46$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số thực $x,\,y$ thỏa mãn $x^2+y^2>1$ và $\log_{x^2+y^2}(2x+4y)\geq1$. Giá trị lớn nhất của biểu thức $P=3x+y$ bằng

$5+2\sqrt{10}$
$5+4\sqrt{5}$
$5+5\sqrt{2}$
$10+2\sqrt{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Với $\log3=a$ và $\log5=b$ thì $\log_945$ biểu diễn theo $a,\,b$ là

$\dfrac{2a+b}{2a}$
$\dfrac{4a+b}{2a}$
$\dfrac{a+2b}{2a}$
$\dfrac{a+b}{a}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tích tất cả các nghiệm của phương trình $\ln^2x+2\ln x-3=0$ bằng

$\dfrac{1}{\mathrm{e}^3}$
$-2$
$-3$
$\dfrac{1}{\mathrm{e}^2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết phương trình $2\log_2x+3\log_x2=7$ có $2$ nghiệm thực $x_1,\,x_2$ ($x_1< x_2$). Tính giá trị của biểu thức $T=\big(x_1\big)^{x_2}$.

$T=32$
$T=8$
$T=16$
$T=64$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tích tất cả các nghiệm của phương trình $\ln\left(x-\dfrac{1}{4}\right)\cdot\ln\left(x+\dfrac{1}{2}\right)\cdot\ln(x+2)=0$ là

$\dfrac{5}{4}$
$\dfrac{5}{8}$
$\dfrac{5}{2}$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng

$\dfrac{15}{2}$
$\dfrac{9}{2}$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho các số thực dương $x,\,y$ thỏa mãn $\ln x+\ln y\geq\ln\big(2x+y^2\big)$. Tìm giá trị nhỏ nhất của biểu thức $S=x+8y$.

$32$
$29$
$25$
$46$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $\log_25=a$ và $\log_35=b$. Khi đó, $\log_65$ tính theo $a$ và $b$ là

$a^2+b^2$
$\dfrac{ab}{a+b}$
$\dfrac{1}{a+b}$
$a+b$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho $x,\,y$ là các số thực dương thỏa mãn $\log_2x+\log_2(2y)\geq\log_2\left(x^2+2y\right)$. Biết giá trị nhỏ nhất của biểu thức $P=x+2y$ có dạng $a\sqrt{b}+c$ trong đó $a,\,b,\,c$ là các số tự nhiên và $a>1$. Giá trị của $a+b+c$ bằng

$11$
$13$
$9$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng

$13$
$18$
$5$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Với mọi $a,\,b$ thỏa mãn $\log_2a-3\log_2b=2$, khẳng định nào dưới đây đúng?

$a=4b^3$
$a=3b+4$
$a=3b+2$
$a=\dfrac{4}{b^3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Đặt \(a=\log_23\), \(b=\log_53\). Nếu biểu diễn \(\log_645=\dfrac{a(m+nb)}{b(a+p)}\) với \(m,\,n,\,p\in\mathbb{N}\) thì \(m+n+p\) bằng

\(3\)
\(4\)
\(6\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Phương trình \(2^{x-2}=3^{x^2+2x-8}\) có một nghiệm dạng \(x=\log_ab-4\) với \(a,\,b\) là các số nguyên dương thuộc khoảng \((1;5)\). Khi đó, \(a+2b\) bằng

\(6\)
\(9\)
\(14\)
\(7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(T\) là tổng các nghiệm của phương trình \(\log_{\tfrac{1}{3}}^2x-5\log_3x+4=0\). Tính \(T\).

\(T=84\)
\(T=5\)
\(T=-5\)
\(T=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự