Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=\mathrm{e}^x$ | |
$y=\big(\sqrt{2}\big)^x$ | |
$y=\left(\dfrac{4}{3}\right)^x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ |
Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Hàm số nào dưới dây là hàm số đồng biến trên $\mathbb{R}$?
$y=\left(\sqrt{2}-1\right)^x$ | |
$y=\log_3x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ | |
$y=3^x$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=-x^3-x$ | |
$y=-x^4-x^2$ | |
$y=-x^3+x$ | |
$y=\dfrac{x+2}{x-1}$ |
Tìm $m$ để hàm số $y=-\left(m^2+1\right)x+m-4$ nghịch biến trên $\Bbb{R}$.
$m>1$ | |
Với mọi $m$ | |
$m<-1$ | |
Không tồn tại $m$ |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\dfrac{x-1}{x+1}\) | |
\(y=\log_2x\) | |
\(y=3^x\) | |
\(y=x^4+2x^2+4\) |
Tìm điều kiện của tham số \(m\) để hàm số \(y=(m-3)x+2019\) luôn nghịch biến trên \(\Bbb{R}\).
\(m>3\) | |
\(m\leq3\) | |
\(m<3\) | |
\(m\neq3\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên mỗi khoảng xác định của nó.
\(m<-3\) | |
\(m\leq-3\) | |
\(m\leq1\) | |
\(m<1\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).
\(9\) | |
\(7\) | |
Vô số | |
\(8\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.
\(m\leq1\) | |
\(m<1\) | |
\(m<-3\) | |
\(m\leq-3\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.
\(-\dfrac{5}{4}\leq m\leq1\) | |
\(-\dfrac{2}{7}\leq m<1\) | |
\(-\dfrac{7}{2}\leq m<1\) | |
\(-\dfrac{2}{7}\leq m\leq1\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).
\(m\in(-\infty;-3)\cup(1;+\infty)\) | |
\(m\in[-3;1]\) | |
\(m\in(-\infty;1]\) | |
\(m\in(-3;1)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).
\(-1\leq m\leq3\) | |
\(-3< m<1\) | |
\(-1< m<3\) | |
\(-3\leq m\leq1\) |
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
\(y=x^3-3x^2+4\) | |
\(y=-x^4-2x^2-3\) | |
\(y=x^3+3x\) | |
\(y=-x^3+3x^2-3x+2\) |
Trong các hàm số dưới đây, hàm số nào nghịch biến trên \(\mathbb{R}\)?
\(y=\left(\dfrac{\pi}{3}\right)^x\) | |
\(y=\log_{\tfrac{\pi}{4}}\left(2x^2+1\right)\) | |
\(y=\left(\dfrac{2}{\mathrm{e}}\right)^x\) | |
\(y=\log_{\tfrac{2}{3}}x\) |
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
\(y=2019^x\) | |
\(y=3^{-x}\) | |
\(y=\left(\sqrt{\pi}\right)^x\) | |
\(y=\mathrm{e}^x\) |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\log_2x\) | |
\(y=\dfrac{x-1}{x+1}\) | |
\(y=3^x\) | |
\(y=x^4+2x^2+4\) |
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
\(y=\left(\dfrac{\mathrm{e}}{2}\right)^{-2x}\) | |
\(y=\left(\dfrac{3}{\mathrm{e}}\right)^x\) | |
\(y=\left(\dfrac{1}{3}\right)^{-x}\) | |
\(y=2019^x\) |
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
\(y=\log_{\tfrac{\pi}{4}}x\) | |
\(y=\log_\pi x\) | |
\(y=\left(\dfrac{\sqrt{5}}{2}\right)^x\) | |
\(y=2^x\) |