Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.
$\big\{0;1\big\}$ | |
$\big\{1\big\}$ | |
$\big\{-1;1\big\}$ | |
$\big\{0\big\}$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=(m+2)x^4+(m-3)x^2+2022$ có ba cực trị là
$4$ | |
$2$ | |
$3$ | |
$6$ |
Tìm các giá trị thực của tham số $m$ để đồ thị hàm số $y=x^4-2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$.
$m=2$ | |
$m=-2$ | |
$m=\pm2$ | |
$m=32$ |
Cho hàm số $y=\dfrac{x^4}{4}-(3m+1)x^2+2(m+1)$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có trọng tâm là gốc tọa độ.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{1}{3}$ | |
$m=\dfrac{1}{3}$ |
Cho hàm số $y=\dfrac{9}{8}x^4+3(m-3)x^2+4m+2022$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác đều.
$m=-2$ | |
$m=2$ | |
$m=3$ | |
$m=2022$ |
Cho hàm số $y=x^4-2(m+1)x^2+m^2$ với $m$ là tham số thực. Tìm tất cả các giá trị của $m$ để đồ thị hàm số có $3$ điểm cực trị tạo thành một tam giác vuông.
$m=-1$ | |
$m=0$ | |
$m=1$ | |
$m>-1$ |
Tìm tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y=x^4+(6m-4)x^2+1-m\) có \(3\) điểm cực trị.
\(m\geq\dfrac{2}{3}\) | |
\(m\leq\dfrac{2}{3}\) | |
\(m>\dfrac{2}{3}\) | |
\(m<\dfrac{2}{3}\) |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
$4$ | |
$2$ | |
$1$ | |
$3$ |
Hàm số $y=\dfrac{1}{3}x^3-mx^2+\big(m^2-m-1\big)x+m^3$ đạt cực đại tại điểm $x=1$ thì giá trị của tham số $m$ bằng
$\left[\begin{array}{l}m=0\\ m=3\end{array}\right.$ | |
$m=0$ | |
$m=-3$ | |
$m=3$ |
Giá trị cực tiểu của hàm số $y=x^4-4x^2+3$ là
$y_{\text{CT}}=0$ | |
$y_{\text{CT}}=3$ | |
$y_{\text{CT}}=\sqrt{2}$ | |
$y_{\text{CT}}=-1$ |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
$y=x^3-2x^2-1$ | |
$y=-x^4+2x^2-1$ | |
$y=x^4-2x^2-1$ | |
$y=x^4+2x^2+1$ |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\big|3x^4-4x^3-12x^2+m\big|$ có $7$ điểm cực trị?
$4$ | |
$6$ | |
$3$ | |
$5$ |
Cho hàm số $f(x)=x^4-32x^2+4$. Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, tổng giá trị các nghiệm phân biệt thuộc khoảng $(-3;2)$ của phương trình $f\big(x^2+2x+3\big)=m$ bằng $-4$?
$145$ | |
$142$ | |
$144$ | |
$143$ |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?
$16$ | |
$6$ | |
$17$ | |
$7$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x+2)^2(x-1)^5\big(x^2-2(m-6)x+m\big)$ với mọi $x\in\mathbb{R}$. Số giá trị nguyên dương của tham số $m$ để hàm số đã cho có đúng một điểm cực trị là
$7$ | |
$5$ | |
$6$ | |
$4$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=-x^4+6x^2+mx$ có ba điểm cực trị?
$17$ | |
$15$ | |
$3$ | |
$7$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.
Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
$(-1;2)$ | |
$(0;1)$ | |
$(1;2)$ | |
$(1;0)$ |