Tìm điều kiện của phương trình $$\dfrac{|x|}{\sqrt{x-1}}=x\sqrt{x-1}$$
\(x\geq0\) | |
\(x\geq0\) và \(x\neq1\) | |
\(x>1\) | |
\(x\geq1\) |
Điều kiện xác định của phương trình \(\dfrac{\sqrt{x+2}}{x^2+2x}=\dfrac{3}{\sqrt{5-x}}\) là
\(x\in\Bbb{R}\setminus\{0;-2\}\) | |
\(x\in(-2;5)\setminus\{0\}\) | |
\(x\in[-2;5]\setminus\{0;-2\}\) | |
\(x\in(-\infty;5)\setminus\{0;-2\}\) |
Tìm điều kiện xác định của phương trình $$\dfrac{\sqrt{x+1}}{x}+3x^5-2019=0$$
\(x\geq-1\) | |
\(x>-1\) và \(x\neq0\) | |
\(x\geq-1\) và \(x\neq0\) | |
\(x>-1\) |
Phương trình \(x^2+1=\dfrac{1}{\sqrt{x-1}}\) xác định với
\(x\in(1;+\infty)\) | |
\(x\in\Bbb{R}\) | |
\(x\in[1;+\infty)\) | |
\(x\in\Bbb{R}\setminus\{1\}\) |
Điều kiện xác định của phương trình \(\sqrt{x}+\dfrac{x^2-1}{x-1}=\sqrt[3]{x-2}\) là
\(x\geq2\) | |
\(x\geq0\) và \(x\neq1\) | |
\(x\geq0\) | |
\(\begin{cases}x\geq0\\ x\neq1\\ x\neq2\end{cases}\) |
Điều kiện xác định của phương trình \(x+\dfrac{1}{\sqrt{2x+4}}=\dfrac{\sqrt{3-2x}}{x}\) là
\(x>-2\) và \(x< \dfrac{3}{2}\) | |
\(-2\leq x\leq\dfrac{3}{2}\) | |
\(x>-2\) và \(x\neq0\) | |
\(\begin{cases}-2< x\leq\dfrac{3}{2}\\ x\neq0\end{cases}\) |
Cho phương trình \(\dfrac{\tan x}{\sin x+1}=0\,\left(1\right)\). Khẳng định nào sau đây là đúng?
Điều kiện xác định của phương trình (1) là \(\forall x\in\mathbb{R}\) | |
Điều kiện xác định của phương trình (1) là \(\sin x\ne-1\) | |
Điều kiện xác định của phương trình (1) là \(\sin x\neq-1\) và \(\cos x\neq0\) | |
Điều kiện xác định của phương trình (1) là \(\cos x\neq0\) |
Phương trình \(x^2-x+\dfrac{1}{\sqrt{x-1}}=\dfrac{1}{\sqrt{x-1}}+6\) có bao nhiêu nghiệm?
Vô nghiệm | |
1 nghiệm | |
2 nghiệm | |
3 nghiêm |
Phương trình \(\dfrac{x^2-4x+2}{\sqrt{x-2}}=\sqrt{x-2}\) có bao nhiêu nghiệm?
Vô nghiệm | |
1 nghiệm | |
2 nghiệm | |
4 nghiệm |
Số nghiệm của phương trình \(\dfrac{x}{2\sqrt{x-3}}=\dfrac{1}{\sqrt{x-3}}\) là
Vô nghiệm | |
1 nghiệm | |
2 nghiệm | |
3 nghiêm |
Số nghiệm của phương trình \(2x+\dfrac{1}{\sqrt{x+1}}=-x^2+\dfrac{1}{\sqrt{x+1}}\) là
Vô nghiệm | |
1 nghiệm | |
2 nghiệm | |
3 nghiêm |
\(x\geq2\) là điều kiện xác định của phương trình nào dưới đây?
\(x+\dfrac{1}{x-2}=2x-1\) | |
\(x+\dfrac{1}{x}+\sqrt{x-2}=0\) | |
\(x+\dfrac{1}{4-x}=\sqrt{x-2}\) | |
\(x+\dfrac{1}{x-2}=0\) |
Điều kiện xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là
\(x>3\) | |
\(x\geq2\) | |
\(x\geq1\) | |
\(x\geq3\) |
Biết rằng miền xác định của bất phương trình \(\sqrt{6-3x}+\dfrac{1}{x+1}>2\) là nửa khoảng \((a;b]\). Giá trị của \(S=2a+b\) bằng bao nhiêu?
\(S=0\) | |
\(S=-2\) | |
\(S=3\) | |
\(S=1\) |
Tìm tập xác định của hàm số $$f(x)=\dfrac{x+7}{\sqrt{x-7}}$$
\(\mathscr{D}=(7;+\infty)\) | |
\(\mathscr{D}=[7;+\infty)\) | |
\(\mathscr{D}=\Bbb{R}\setminus\{7\}\) | |
\(\mathscr{D}=(-\infty;7)\) |
Tìm điều kiện xác định của bất phương trình \(\sqrt{\dfrac{x+1}{(x-2)^2}}<x+1\).
\(x\in[-1;+\infty)\) | |
\(x\in(-1;+\infty)\) | |
\(x\in(-1;+\infty)\setminus\{2\}\) | |
\(x\in[-1;+\infty)\setminus\{2\}\) |
Tìm điều kiện xác định của bất phương trình \(x+\dfrac{x-1}{\sqrt{x+5}}>2-\sqrt{4-x}\).
\(x\in[-5;4]\) | |
\(x\in(-5;4]\) | |
\(x\in[4;+\infty)\) | |
\(x\in(-\infty;-5)\) |
Tìm $m$ để phương trình $\dfrac{2\sin x+\cos x+1}{\sin x-2\cos x+3}=m$ có nghiệm.
$\dfrac{1}{2}\leq m\leq2$ | |
$m\geq2$ | |
$m\leq-\dfrac{1}{2}$ | |
$-\dfrac{1}{2}\leq m\leq2$ |
Cho hàm số $y=\dfrac{2x+4}{x^2+4x+3}$. Phương trình $y''=0$ có nghiệm là
$x=-4$ | |
$x=-2$ | |
$x=0$ | |
$x=2$ |
Gọi $x_0$ là nghiệm của phương trình $$1-\dfrac{2}{x-2}=\dfrac{10}{x+3}-\dfrac{50}{\left(2-x\right)\left(x+3\right)}.$$Mệnh đề nào sau đây đúng?
$x_0\in\left(-5;-3\right)$ | |
$x_0\in\left[-3;-1\right]$ | |
$x_0\in\left(-1;4\right)$ | |
$x_0\in\left[4;+\infty\right)$ |