Trong không gian \(Oxyz\), hình chiếu của điểm \(M(-1;0;3)\) theo phương vectơ \(\vec{v}=(1;-2;1)\) trên mặt phẳng \((P)\colon x-y+z+2=0\) có tọa độ là
\((2;-2;-2)\) | |
\((-1;0;1)\) | |
\((-2;2;2)\) | |
\((1;0;-1)\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian $Oxyz$, tọa độ giao điểm của trục hoành với mặt phẳng $(P)\colon x-2y+z-2=0$ là
$(-2;0;0)$ | |
$(2;0;0)$ | |
$(0;-1;0)$ | |
$(0;0;2)$ |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng
\(-2\) | |
\(13\) | |
\(-5\) | |
\(12\) |
Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A(3;-1;1)\) trên mặt phẳng \((Oyz)\) là điểm
\(P(3;0;0)\) | |
\(N(0;-1;1)\) | |
\(Q(0;-1;0)\) | |
\(M(0;0;1)\) |
Trong không gian \(Oxyz\), hình chiếu vuông góc của điểm \(A(1;2;3)\) trên mặt phẳng \((Oxy)\) là điểm
\(P(1;0;0)\) | |
\(N(1;2;0)\) | |
\(Q(0;2;0)\) | |
\(M(0;0;3)\) |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, tọa độ hình chiếu vuông góc của điểm $M(1;0;1)$ lên đường thẳng $\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ là
$\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)$ | |
$(2;4;6)$ | |
$(0;0;0)$ | |
$\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y+2z-6=0$. Điểm nào sau đây thuộc mặt phẳng $(P)$?
$M(1;-1;1)$ | |
$I(2;0;-2)$ | |
$N(1;0;-2)$ | |
$P(3;0;0)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Hình chiếu vuông góc của điểm $A$ trên mặt phẳng $(Oxy)$ là điểm
$M(0;0;3)$ | |
$N(1;2;0)$ | |
$Q(0;2;0)$ | |
$P(1;0;0)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$. Hình chiếu vuông góc của $A$ lên mặt phẳng $(Oxy)$ có tọa độ là
$(0;2;-3)$ | |
$(1;0;-3)$ | |
$(1;2;0)$ | |
$(1;0;0)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
$\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ | |
$\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ | |
$\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |
Trong không gian $Oxyz$, cho $(S)\colon x^2+y^2+z^2-4x-2y+10z-14=0$. Mặt phẳng $(P)\colon-x+4z+5=0$ cắt mặt cầu $(S)$ theo một đường tròn $(\mathscr{C})$. Tọa độ tâm $H$ của $(\mathscr{C})$ là
$H(1;1;-1)$ | |
$H(-3;1;-2)$ | |
$H(9;1;1)$ | |
$H(-7;1;-3)$ |
Trong không gian $Oxyz$, cho điểm $M(-2;1;8)$. Gọi $H$ là hình chiếu vuông góc của $M$ trên mặt phẳng $(Oxy)$. Tọa độ của điểm $H$ là
$H(-2;0;8)$ | |
$H(-2;1;0)$ | |
$H(0;0;8)$ | |
$H(0;1;8)$ |
Trong không gian $Oxyz$, gọi $M(a;b;c)$ là giao điểm của đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-3}{-1}=\dfrac{z-2}{1}$ và mặt phẳng $(P)\colon2x+3y-4z+4=0$. Tính $T=a+b+c$.
$T=\dfrac{3}{2}$ | |
$T=6$ | |
$T=4$ | |
$T=-\dfrac{5}{2}$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng
$5$ | |
$-2$ | |
$-5$ | |
$0$ |
Trong không gian $Oxyz$, cho điểm $A(3;5;2)$. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua các điểm là hình chiếu của điểm $A$ trên các mặt phẳng tọa độ?
$10x+6y+15z-90=0$ | |
$10x+6y+15z-60=0$ | |
$3x+5y+2z-60=0$ | |
$\dfrac{x}{3}+\dfrac{y}{5}+\dfrac{z}{2}=1$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
$(4;-1;6)$ | |
$(4;6;1)$ | |
$(-4;6;-1)$ | |
$(4;1;6)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y-2z+1=0$ và hai điểm $A(1;-1;4)$, $B(3;-3;2)$. Gọi $K$ là giao điểm của đường thẳng $AB$ với mặt phẳng $(P)$. Tính tỉ số $t=\dfrac{KA}{KB}$.
$t=1$ | |
$t=2$ | |
$t=\dfrac{3}{2}$ | |
$t=\dfrac{2}{3}$ |
Trong không gian $Oxyz$, cho điểm $A(2;0;0)$ và đường thẳng $BC$ có phương trình là $\begin{cases} x=-t\\ y=3+t\\ z=1+t \end{cases}$. Tìm hình chiếu vuông góc của điểm $A$ lên đường thẳng $BC$.
$(2;1;1)$ | |
$(2;-1;-1)$ | |
$(-2;1;-1)$ | |
$(2;1;-1)$ |