Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ và có bảng biến thiên như sau :
Mệnh đề nào sau đây đúng?
Hàm số đồng biến trên khoảng $\left(2;+\infty\right)$ | |
Hàm số nghịch biến trên khoảng $\left(-\infty;2\right)$ | |
Hàm số nghịch biến trên các khoảng $\left(-\infty;1\right)$ và $\left(1;+\infty\right)$ | |
Hàm số nghịch biến trên $\mathbb{R}$ |
Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.
Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?
$\left(-1;0\right)$ | |
$\left(-2;-1\right)$ | |
$\left(1;2\right)$ | |
$\left(0;1\right)$ |
Cho hàm số \(f\left(x\right)=\dfrac{ax+1}{bx+c}\) \(\left(a,b,c\in\mathbb{R}\right)\) có bảng biến thiên như sau:
Trong các số \(a,\,b\) và \(c\) có bao nhiêu số dương?
\(2\) | |
\(3\) | |
\(1\) | |
\(0\) |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.
Kết luận nào sau đây đúng?
$ad>0$, $bc< 0$ | |
$ad< 0$, $bc>0$ | |
$ad< 0$, $bc< 0$ | |
$ad>0$, $bc>0$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
$y=-x^3+3x+1$ | |
$y=\dfrac{x-1}{x+1}$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^4-x^2+1$ |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.
Khẳng định nào sau đây đúng?
$\max\limits_{[-1;3]}f(x)=f(0)$ | |
$\max\limits_{[-1;3]}f(x)=f(3)$ | |
$\max\limits_{[-1;3]}f(x)=f(-1)$ | |
$\max\limits_{[-1;3]}f(x)=f(2)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số đã cho là
$0$ | |
$3$ | |
$2$ | |
$1$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:
Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là
$5$ | |
$3$ | |
$6$ | |
$4$ |
Cho hàm số $f(x)$ có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
$x=-2$ | |
$x=3$ | |
$x=5$ | |
$x=-3$ |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.
Khi đó $a+b-c$ bằng
$-2$ | |
$-1$ | |
$1$ | |
$0$ |
Cho hàm số $y=ax^3-3x^2+b$ ($a\neq0$) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
$a>0,\,b< 0$ | |
$a< 0,\,b>0$ | |
$a>0,\,b>0$ | |
$a< 0,\,b< 0$ |
Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:
Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng
$1$ | |
$4$ | |
$0$ | |
$5$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Tiệm cận đứng của đồ thị hàm số đã cho là
$x=3$ | |
$x=2$ | |
$x=0$ | |
$x=1$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
$(-\infty;1)$ | |
$(0;1)$ | |
$(-1;0)$ | |
$(-2;+\infty)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng
$-2$ | |
$-1$ | |
$4$ | |
$3$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:
Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng
$15$ | |
$\dfrac{25}{3}$ | |
$\dfrac{19}{3}$ | |
$12$ |
Hàm số nào dưới đây có bảng biến thiên như sau?
$y=\dfrac{x+2}{x}$ | |
$y=-x^3+3x+1$ | |
$y=x^4-3x^2$ | |
$y=-2x^2+1$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
$(-\infty;2)$ | |
$(1;+\infty)$ | |
$(1;3)$ | |
$(-\infty;1)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực trị của hàm số đã cho bằng
$1$ | |
$2$ | |
$3$ | |
$0$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
$(0;2)$ | |
$(3;+\infty)$ | |
$(-\infty;1)$ | |
$(1;3)$ |