Cho đồ thị của các hàm số $y=a^x$, $y=b^x$, $y=c^x$ như hình bên.
Hỏi trong các số $a,\,b$ và $c$ có bao nhiêu số lớn hơn $1$?
$0$ | |
$3$ | |
$2$ | |
$1$ |
Cho $a$ và $b$ là hai số thực dương khác $1$ và các hàm số $y=a^x$, $y=b^x$ có đồ thị như hình bên.
Đường thẳng $y=3$ cắt trục tung, đồ thị hàm số $y=a^x$, đồ thị hàm số $y=b^x$ lần lượt tại $H,\,M,\,N$. Biết rằng $HM=2MN$. Mệnh đề nào sau đây đúng?
$a^2=b^3$ | |
$3a=2b$ | |
$a^3=b^2$ | |
$2a=b$ |
Cho hàm số $y=2^x$ có đồ thị là đường cong trong hình bên.
Diện tích $S$ của hình phẳng được tô đậm trong hình bằng
$S=\displaystyle\displaystyle\int\limits_{1}^{2}2^x\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^{2x}\mathrm{\,d}x$ | |
$S=\pi\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$ |
Biết hàm số \(f(x)=\dfrac{a}{b^2\cdot3^x}\) có đồ thị đối xứng với đồ thị hàm số \(y=3^x\) qua đường thẳng \(x=-1\). Biết \(a,\,b\) là các số nguyên.
Chọn khẳng định đúng trong các khẳng định sau:
\(b^2=9a\) | |
\(b^2=4a\) | |
\(b^2=6a\) | |
\(b^2=a\) |
Cho các hàm số \(y=\log_ax\), \(y=b^x\), \(y=c^x\) có đồ thị như hình vẽ.
Mệnh đề nào dưới đây là đúng?
\(b>c>a\) | |
\(a>b>c\) | |
\(b>a>c\) | |
\(c>b>a\) |
Hình vẽ bên biểu diễn đồ thị của hai hàm số \(y=a^x\) và \(y=\log_bx\) với \(a,\,b\) là các số thực dương và \(b\neq1\).
Mệnh đề nào dưới đây là đúng?
\(\log_ab^2>0\) | |
\(\log_ab<0\) | |
\(\log_ab>0\) | |
\(\log_ba>0\) |
Cho ba số thực dương \(a,\,b,\,c\) khác \(1\). Đồ thị hàm số \(y=a^x\), \(y=b^x\) và \(y=c^x\) được cho trong hình vẽ.
Mệnh đề nào dưới đây là đúng?
\(a< b< c\) | |
\(a< c< b\) | |
\(b< c< a\) | |
\(c< a< b\) |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.
Kết luận nào sau đây đúng?
$ad>0$, $bc< 0$ | |
$ad< 0$, $bc>0$ | |
$ad< 0$, $bc< 0$ | |
$ad>0$, $bc>0$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
$3$ | |
$2$ | |
$4$ | |
$5$ |
Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.
Hãy xác định hàm số đó.
$y=-x^4-4x^2+1$ | |
$y=x^3-3x+1$ | |
$y=-x^3+3x-1$ | |
$y=x^3+3x+1$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
$y=-x^3+3x+1$ | |
$y=\dfrac{x-1}{x+1}$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^4-x^2+1$ |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.
Khẳng định nào sau đây là sai?
Hàm số đồng biến trên $(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)$ | |
Hàm số nghịch biến trên $(-1;1)$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
$(-1;1)$ | |
$(-2;0)$ | |
$(-2;-1)$ | |
$(0;2)$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.
Tọa độ giao điểm của đồ thị đã cho và trục tung là
$(4;0)$ | |
$(0;4)$ | |
$(0;3)$ | |
$(3;0)$ |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.
Khi đó $a+b-c$ bằng
$-2$ | |
$-1$ | |
$1$ | |
$0$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là
$2020$ | |
$2019$ | |
$2021$ | |
$2022$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
$(-\infty;0)$ | |
$(-1;1)$ | |
$(1;4)$ | |
$(1;+\infty)$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số nghiệm của phương trình $f(x)-1=0$ là
$2$ | |
$1$ | |
$4$ | |
$3$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.
Giá trị của tham số $m$ để phương trình $f(x)+1=m$ có ba nghiệm phân biệt là
$0< m< 4$ | |
$1< m< 5$ | |
$-1< m< 4$ | |
$0< m< 5$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
$(2;+\infty)$ | |
$(-2;2)$ | |
$(0;2)$ | |
$(-\infty;2)$ |