Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng
\(\dfrac{\sqrt{14}}{14}\) | |
\(\dfrac{3\sqrt{14}}{14}\) | |
\(\dfrac{3\sqrt{14}}{7}\) | |
\(\dfrac{4\sqrt{14}}{7}\) |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
$\dfrac{a^3\sqrt{7}}{18}$ | |
$\dfrac{a^3\sqrt{7}}{6}$ | |
$\dfrac{a^3\sqrt{7}}{3}$ | |
$\dfrac{a^3\sqrt{7}}{12}$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$, $AB=a$. Biết khoảng cách từ $A$ đến mặt phẳng $(A'BC)$ bằng $\dfrac{\sqrt{6}}{3}a$, thể tích khối lăng trụ đã cho bằng
$\dfrac{\sqrt{2}}{6}a^3$ | |
$\dfrac{\sqrt{2}}{2}a^3$ | |
$\sqrt{2}a^3$ | |
$\dfrac{\sqrt{2}}{4}a^3$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
$\dfrac{a^3\sqrt{7}}{9}$ | |
$\dfrac{a^3\sqrt{7}}{6}$ | |
$\dfrac{a^3\sqrt{7}}{12}$ | |
$\dfrac{a^3\sqrt{7}}{18}$ |
Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\). Biết \(AC=a\), \(BC=\dfrac{a}{2}\), \(SA=\dfrac{a\sqrt{3}}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng
\(\dfrac{a\sqrt{6}}{4}\) | |
\(a\sqrt{6}\) | |
\(\dfrac{a\sqrt{3}}{2}\) | |
\(\dfrac{a\sqrt{6}}{2}\) |
Cho hình hộp \(ABCD.A'B'C'D'\) có chiều cao bằng \(8\) và diện tích đáy bằng \(9\). Gọi \(M,\,N,\,P\) và \(Q\) lần lượt là tâm của các mặt bên \(ABB'A'\), \(BCC'B'\), \(CDD'C'\) và \(DAA'D'\). Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,\,B,\,C,\,D\), \(M,\,N,\,P\) và \(Q\) bằng
\(27\) | |
\(30\) | |
\(18\) | |
\(36\) |
Cho khối nón có đỉnh $S$, chiều cao bằng $8$ và thể tích bằng $\dfrac{800\pi}{3}$. Gọi $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho $AB=12$, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng $(SAB)$ bằng
$8\sqrt{2}$ | |
$\dfrac{24}{5}$ | |
$4\sqrt{2}$ | |
$\dfrac{5}{24}$ |
Cho khối nón đỉnh $S$ có bán kính đáy bằng $2\sqrt{3}a$. Gọi $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho $AB=4a$. Biết khoảng cách từ tâm của đáy đến mặt phẳng $(SAB)$ bằng $2a$, thể tích của khối nón đã cho bằng
$\dfrac{8\sqrt{2}}{3}\pi a^3$ | |
$4\sqrt{6}\pi a^3$ | |
$\dfrac{16\sqrt{3}}{3}\pi a^3$ | |
$8\sqrt{2}\pi a^3$ |
Trong không gian \(Oxyz\), cho đường tròn \((\mathscr{C})\) có tâm \(H(-1;1;1)\), bán kính \(r=2\) nằm trên mặt phẳng \((P)\colon x-2y+2z+1=0\). Diện tích của mặt cầu có tâm thuộc mặt phẳng \((Q)\colon x+y+z=0\) và chứa đường tròn \((C)\) bằng
\(26\pi\) | |
\(2\pi\) | |
\(52\pi\) | |
\(40\pi\) |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
$V=\dfrac{7\sqrt{6}a^3}{72}$ | |
$V=\dfrac{7\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là
$\dfrac{3a^3}{16}$ | |
$\dfrac{a^3}{16}$ | |
$\dfrac{a^3\sqrt{3}}{16}$ | |
$\dfrac{3\sqrt{3}a^3}{16}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.
$V=\dfrac{1}{12}$ | |
$V=\dfrac{1}{3}$ | |
$V=\dfrac{1}{6}$ | |
$V=\dfrac{2}{3}$ |
Một khối chóp có thể tích $V=15\text{ cm}^3$ và chiều cao $h=3$m. Hỏi diện tích đáy của khối chóp đó là bao nhiêu?
$15$m | |
$5\text{ m}^2$ | |
$5$m | |
$15\text{ m}^2$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
$\dfrac{V'}{V}=\dfrac{1}{6}$ | |
$\dfrac{V'}{V}=\dfrac{2}{5}$ | |
$\dfrac{V'}{V}=\dfrac{1}{3}$ | |
$\dfrac{V'}{V}=\dfrac{1}{4}$ |
Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng
$\dfrac{3}{2}a^3$ | |
$\dfrac{1}{2}a^3$ | |
$2\sqrt{3}a^3$ | |
$\dfrac{2\sqrt{3}}{3}a^3$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
$\dfrac{\sqrt{3}}{4}a^3$ | |
$\dfrac{\sqrt{3}}{2}a^3$ | |
$\dfrac{3\sqrt{3}}{4}a^3$ | |
$\dfrac{3\sqrt{3}}{2}a^3$ |