Ngân hàng bài tập

Bài tập tương tự

S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(SA=2a\) và vuông góc với mặt đáy. Gọi \(M,\,N\) lần lượt là hình chiếu vuông góc của \(A\) trên các đường thẳng \(SB\), \(SC\).

Tính thể tích của khối chóp \(A.BCNM\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.

$V=\dfrac{7\sqrt{6}a^3}{72}$
$V=\dfrac{7\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{72}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$ và có $AB=a$, $BC=a\sqrt{3}$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3\sqrt{6}}{12}$
$V=\dfrac{a^3\sqrt{6}}{4}$
$V=\dfrac{a^3\sqrt{6}}{6}$
$V=\dfrac{a^3\sqrt{6}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có chiều cao bằng $8$ và đáy $ABCD$ là hình vuông cạnh bằng $3$. Gọi $M$ là trung điểm của $SB$ và $N$ là điểm thuộc $SD$ sao cho $\overrightarrow{SN}=2\overrightarrow{ND}$. Thể tích khối tứ diện $ACMN$ bằng

$6$
$9$
$4$
$3$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).

Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3}{8}$
$\dfrac{3a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{a^3}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho khối chóp $S.ABCD$ có đáy là hình bình hành và có thể tích $48$. Trên các cạnh $SA,\,SB,\,SC,\,SD$ lần lượt lấy các điểm $A',\,B',\,C'$ và $D'$ sao cho $\dfrac{SA'}{SA}=\dfrac{SC'}{SC}=\dfrac{1}{3}$ và $\dfrac{SB'}{SB}=\dfrac{SD'}{SD}=\dfrac{3}{4}$. Tính thể tích $V$ của khối đa diện lõm $S.A'B'C'D'$.

$V=4$
$V=9$
$V=\dfrac{3}{2}$
$V=6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tứ diện $ABCD$. Các điểm $M$, $N$, $P$ lần lượt thuộc các cạnh $AB$, $AC$, $AD$ sao cho $MA=MB$, $NA=2NC$, $PA=3PD$. Biết thể tích khối tứ diện $AMNP$ bằng $V$ thì khối tứ diện $ABCD$ tính theo $V$ có giá trị là

$4V$
$6V$
$12V$
$8V$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$, gọi $M$, $N$ lần lượt là trung điểm của cạnh $SA$, $SB$. Tính tỉ số $\dfrac{\mathrm{V}_{S.ABC}}{\mathrm{V}_{S.MNC}}$.

$4$
$\dfrac{1}{2}$
$2$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tứ diện $MNPQ$. Gọi $I,\,J,\,K$ lần lượt là trung điểm của các cạnh $MN,\,MP,\,MQ$.

Tỉ số $\dfrac{V_{MIJK}}{V_{MNPQ}}$ bằng

$\dfrac{1}{3}$
$\dfrac{1}{4}$
$\dfrac{1}{8}$
$\dfrac{1}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp \(S.ABC\) có thể tích bằng \(16\). Gọi \(M,\,N,\,P\) lần lượt là trung điểm của các cạnh \(SA\), \(SB\), \(SC\). Tính thể tích \(V\) của khối tứ diện \(AMNP\).

\(V=12\)
\(V=2\)
\(V=14\)
\(V=8\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng

\(\dfrac{\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{7}\)
\(\dfrac{4\sqrt{14}}{7}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.

$\dfrac{a^3\sqrt{7}}{18}$
$\dfrac{a^3\sqrt{7}}{6}$
$\dfrac{a^3\sqrt{7}}{3}$
$\dfrac{a^3\sqrt{7}}{12}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3}{12}$
$\dfrac{a^3}{9}$
$\dfrac{a^3\sqrt{2}}{9}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M$ là trung điểm của $BB'$. Mặt phẳng $(MDC')$ chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh $C$ và một khối chứa đỉnh $A'$. Gọi $V_1,\,V_2$ lần lượt là thể tích hai khối đa diện chứa $C$ và $A'$. Tỉ số $\dfrac{V_1}{V_2}$ bằng

$\dfrac{V_1}{V_2}=\dfrac{7}{17}$
$\dfrac{V_1}{V_2}=\dfrac{7}{24}$
$\dfrac{V_1}{V_2}=\dfrac{17}{24}$
$\dfrac{V_1}{V_2}=\dfrac{7}{12}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự