Biết rằng \(\lim\limits_{x\to-\sqrt{3}}\dfrac{2x^3+6\sqrt{3}}{3-x^2}=\dfrac{a\sqrt{3}}{b}\) (\(a,\,b\in\mathbb{Z}\)). Tính \(a^2+b^2\).
![]() | \(10\) |
![]() | \(25\) |
![]() | \(5\) |
![]() | \(13\) |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{x^2}{2} &\text{khi }x\leq1\\
ax+b &\text{khi }x>1
\end{cases}$$Tìm tất cả các giá trị của \(a,\,b\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=1\).
![]() | \(a=1,\;b=-\dfrac{1}{2}\) |
![]() | \(a=\dfrac{1}{2},\;b=\dfrac{1}{2}\) |
![]() | \(a=\dfrac{1}{2},\;b=-\dfrac{1}{2}\) |
![]() | \(a=1,\;b=\dfrac{1}{2}\) |
Cho hàm số $$f(x)=\begin{cases}
mx^2+2x+2 &\text{khi }x>0\\
nx+1 &\text{khi }x\leq0
\end{cases}$$Tìm tất cả các giá trị của \(m\) và \(n\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=0\).
![]() | Không tồn tại |
![]() | \(m=2,\;n\in\mathbb{R}\) |
![]() | \(n=2,\;m\in\mathbb{R}\) |
![]() | \(m=n=2\) |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
![]() | $4$ |
![]() | $2$ |
![]() | $1$ |
![]() | $3$ |
$\displaystyle\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng
![]() | $0$ |
![]() | $1$ |
![]() | $3$ |
![]() | $\dfrac{1}{3}$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
![]() | $21$ |
![]() | $10$ |
![]() | $8$ |
![]() | $2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
![]() | $12$ |
![]() | $11$ |
![]() | $6$ |
![]() | $5$ |
Cho $\lim\limits_{x\to x_0^+}f(x)=5$, $\lim\limits_{x\to x_0^-}f(x)=-5$. Chọn khẳng định đúng.
![]() | $\lim\limits_{x\to x_0}f(x)=\pm5$ |
![]() | $\lim\limits_{x\to x_0}f(x)=5$ |
![]() | $\lim\limits_{x\to x_0}f(x)=-5$ |
![]() | Không tồn tại $\lim\limits_{x\to x_0}f(x)$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và $\lim\limits_{x\to1}\dfrac{f(x)-3}{x^2-x}=2$. Tính $T=\lim\limits_{x\to1}\dfrac{f^2(x)+f(x)-12}{x^2+6x-7}$.
![]() | $P=\dfrac{9}{4}$ |
![]() | $P=\dfrac{13}{4}$ |
![]() | $T=\dfrac{5}{4}$ |
![]() | $T=\dfrac{7}{4}$ |
Cho $\lim\limits_{x\to-\infty}\left(\sqrt{ax^2-2x}+bx\right)=11$. Tính $Q=b-a$.
![]() | $Q=\dfrac{17}{121}$ |
![]() | $Q=\dfrac{5}{121}$ |
![]() | $Q=-\dfrac{13}{121}$ |
![]() | $Q=\dfrac{10}{121}$ |
Tính giới hạn $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}$.
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=\dfrac{11}{2}$ |
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=-\dfrac{11}{2}$ |
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=11$ |
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=-11$ |
Cho $\lim\limits_{x\to2}f(x)=3$. Tính giới hạn $B=\lim\limits_{x\to2}\big(4x+5-2f(x)\big)$.
![]() | $B=6$ |
![]() | $B=11$ |
![]() | $B=7$ |
![]() | $B=0$ |
Tính các giới hạn sau:
Kết quả của $\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{x-2}$ bằng
![]() | $+\infty$ |
![]() | $-\infty$ |
![]() | $0$ |
![]() | $4$ |
Giá trị của $\lim\limits_{x\rightarrow-1}(4-3x)$ bằng
![]() | $-7$ |
![]() | $-1$ |
![]() | $7$ |
![]() | $1$ |
$\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng
![]() | $0$ |
![]() | $1$ |
![]() | $3$ |
![]() | $\dfrac{1}{3}$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
![]() | $m\geq2$ |
![]() | $m\leq2$ |
![]() | $m=2$ |
![]() | $m>2$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
![]() | $\left(-\infty;-\dfrac{14}{15}\right)$ |
![]() | $\left(-\infty;-\dfrac{14}{15}\right]$ |
![]() | $\left[-2;-\dfrac{14}{15}\right]$ |
![]() | $\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
![]() | $(-\infty;6]$ |
![]() | $(-\infty;3]$ |
![]() | $(-\infty;3)$ |
![]() | $[3;6]$ |