Cho hàm số $f(x)$ xác định trên khoảng $(a;b)$. Hàm số $f(x)$ được gọi là liên tục tại điểm $x_0$ thuộc khoảng $(a;b)$ nếu
$\lim\limits_{x\to x_0}f(x)=2f\big(x_0\big)$ | |
$\lim\limits_{x\to x_0^-}f(x)=f\big(x_0\big)$ | |
$\lim\limits_{x\to x_0}f(x)=f\big(x_0\big)$ | |
$\lim\limits_{x\to x_0^+}f(x)=f\big(x_0\big)$ |
Hàm số nào sau đây không có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn \([-2;2]\).
\(y=\dfrac{x-1}{x+1}\) | |
\(y=x^2\) | |
\(y=1-x\) | |
\(y=x^3+2\) |
Tìm mệnh đề đúng trong số các mệnh đề sau:
Nếu \(f(x)\) liên tục trên đoạn \([a;b]\) và \(f(a)\cdot f(b)>0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\) | |
Nếu \(f(x)\) liên tục trên đoạn \([a;b]\) và \(f(a)\cdot f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\) | |
Nếu \(f(x)\) liên tục trên khoảng \((a;b)\) và \(f(a)\cdot f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\) | |
Nếu \(f(x)\) liên tục trên đoạn \([a;b]\) và \(f(a)\cdot f(b)<0\) thì phương trình \(f(x)=0\) có ít nhất một nghiệm trên đoạn \([a;b]\) |
Hàm số \(f(x)\) liên tục tại \(x_0\) nếu
\(f\left(x_0\right)\) không tồn tại | |
\(\lim\limits_{x\to x_0^+}f(x)\neq\lim\limits_{x\to x_0^-}f(x)\) | |
\(\lim\limits_{x\to x_0}f(x)\ne f\left(x_0\right)\) | |
\(\lim\limits_{x\to x_0}f(x)=f\left(x_0\right)\) |
Trong các phát biểu sau, phát biểu nào đúng?
Nếu hàm số \(y=f(x)\) không liên tục tại \(x_0\) thì nó có đạo hàm tại điểm đó | |
Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì nó không liên tục tại điểm đó | |
Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì nó liên tục tại điểm đó | |
Nếu hàm số \(y=f(x)\) liên tục tại \(x_0\) thì nó có đạo hàm tại điểm đó |
Cho hàm số $f(x)=\dfrac{2x+3}{(x-1)(x-2)}$. Chọn khẳng định đúng.
$f(x)$ không liên tục tại $x_0=3$ | |
$f(x)$ liên tục tại $x_0=3$ | |
$f(x)$ liên tục tại $x_0=1$ | |
$f(x)$ liên tục tại $x_0=2$ |
Trong 6 khẳng định sau, có bao nhiêu khẳng định đúng?
$6$ | |
$5$ | |
$3$ | |
$4$ |
Cho hàm số $f(x)=\begin{cases}4x-7\text{ khi }x\ne3\\ 2m+1\text{ khi }x=3\end{cases}$. Xác định $m$ để hàm số $f(x)$ liên tục tại $x=3$.
$m=3$ | |
$m=-3$ | |
$m=2$ | |
$m=-2$ |
Cho $\lim\limits_{x\to x_0}f(x)=2$, $\lim\limits_{x\to{x_0}}g(x)=3$, với $L,M\in \mathbb{R}$. Chọn khẳng định sai.
$\lim\limits_{x\to x_0}\left[g(x)-f(x)\right]=1$ | |
$\lim\limits_{x\to x_0}\left[f(x)+g(x)\right]=5$ | |
$\lim\limits_{x\to x_0}\left[f(x)\cdot g(x)\right]=6$ | |
$\lim\limits_{x\to x_0}\left[f(x)-g(x)\right]=1$ |
Hàm số $y=\dfrac{x^2-4x+3}{x+1}$ không liên tục tại điểm nào sau đây?
$x=1$ | |
$x=3$ | |
$x=-3$ | |
$x=-1$ |
Cho hàm số $f(x)=\begin{cases}\dfrac{4x^2+3x-1}{x+1} &\text { khi }x\neq-1\\ 2m+1 &\text { khi }x=-1\end{cases}$. Với giá trị nào của $m$ thì hàm số đã cho liên tục tại điểm $x=-1$?
$m=2$ | |
$m=-3$ | |
$m=\dfrac{1}{2}$ | |
$m=0$ |
Cho hàm số $y=f(x)$ có đồ thị được biểu diễn trong hệ trục tọa độ $Oxy$ như hình vẽ bên.
Mệnh đề nào sau đây sai?
Hàm số $y=f(x)$ liên tục tại điểm $x=3$ | |
Hàm số $y=f(x)$ liên tục tại điểm $x=-1$ | |
Hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ | |
Hàm số $y=f(x)$ gián đoạn tại điểm $x=1$ |
Phát biểu nào sau đây đúng?
Hàm số $y=f(x)$ đạt cực trị tại $x_0$ khi và chỉ khi $x_0$ là nghiệm của đạo hàm | |
Nếu $f'\big(x_0\big)=0$ và $f''\big(x_0\big)>0$ thì hàm số đạt cực đại tại $x_0$ | |
Nếu $f'\big(x_0\big)=0$ và $f''\big(x_0\big)=0$ thì $x_0$ không phải là cực trị của hàm số $y=f(x)$ đã cho | |
Nếu $f'(x)$ đổi dấu khi $x$ qua điểm $x_0$ và $y=f(x)$ liên tục tại $x_0$ thì hàm số $y=f(x)$ đạt cực trị tại điểm $x_0$ |
Nếu $\displaystyle\displaystyle\int\limits_{-1}^{5}f(x)\mathrm{\,d}x=-3$ thì $\displaystyle\displaystyle\int\limits_{5}^{-1}f(x)\mathrm{\,d}x$ bằng
$5$ | |
$6$ | |
$4$ | |
$3$ |
Nếu $\displaystyle\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=4$ thì $\displaystyle\displaystyle\int\limits_0^23f(x)\mathrm{\,d}x$ bằng
$36$ | |
$12$ | |
$3$ | |
$4$ |
Nếu $\displaystyle\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=3$ và $\displaystyle\displaystyle\int\limits_1^4g(x)\mathrm{\,d}x=-2$ thì $\displaystyle\displaystyle\int\limits_1^4[f(x)-g(x)]\mathrm{\,d}x$ bằng
$-1$ | |
$-5$ | |
$5$ | |
$1$ |
Khẳng định nào sau đây sai?
$\displaystyle\displaystyle\int\sin x\mathrm{\,d}x=-\cos x+C$ | |
$\displaystyle\displaystyle\int a^x\mathrm{\,d}x=a^x\ln{a}+C,\,\left(a>0,\,a\ne1\right)$ | |
$\displaystyle\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan{x}+C$ | |
$\displaystyle\displaystyle\int\dfrac{1}{x}\mathrm{\,d}x=\ln\left|x\right|+C$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$, gọi $S$ là diện tích của hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, trục hoành và hai đường thẳng $x=a,\,x=b$ $(a< b)$. Mệnh đề nào sau đây đúng?
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$ | |
$S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}f^2(x)\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)\big|\mathrm{d}x$ |
Cho $f(x)$ và $g(x)$ là các hàm số liên tục trên đoạn $[a;b]$. Mệnh đề nào sau đây đúng?
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$ | |
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$ | |
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$ | |
$\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{d}x=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{a}^{b}g(x)\mathrm{d}x$ |
Cho $u=u(x)$ và $v=v(x)$. Mệnh đề nào sau đây là đúng?
$(u.v)^{\prime}=u'.v-u.v'$ | |
$(u.v)^{\prime}=u'.v'$ | |
$(u+v)^{\prime}=u'.v+u.v'$ | |
$(u.v)^{\prime}=u'.v+u.v'$ |